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Modular synthesis of CF2-containing
compounds with PhSO2CF2H reagent
through difluoromethylene radical anion
synthon strategy

ShuoSun1,3, Rulong Jia1,2,3, Xin Zhou1, ZhongyiWang1, JianRong1, ChuanfaNi 1 &
Jinbo Hu 1,2

Difluoromethylene moiety has gained widespread applications in pharma-
ceuticals, agrochemicals, and materials owing to its augmented lipophilicity
and being bioisosteric to ethereal oxygen. Possessing two orthogonal reac-
tivity modes for bridging an electrophile and a radical acceptor to give gem-
difluorides (R1-CF2-R

2), the efficient difluoromethylene radical anion synthon
(diFRAS) has been long sought after. In this work, we successfully utilize the
readily available difluoromethyl phenyl sulfone (PhSO2CF2H) to couple with
electrophiles and radical acceptors, thereby enabling PhSO2CF2H to serve as a
novel diFRAS in organic synthesis. The generation of radicals (•CF2R) via visible
light-promoted homolytic cleavage of C−S bonds in (phenylsulfonyl)difluor-
omethylated derivatives (PhSO2CF2R) is the linchpin in the diFRAS strategy to
construct gem-difluorides (R1-CF2-R

2) with structural complexity.

The incorporation of fluorine into pharmaceutical candidates often
leads to improvements in metabolic stability, lipophilicity, and aug-
mented biological activity1,2. Among fluorinated motifs, difluor-
omethylene has been known to serve as a bioisostere of ethereal
oxygen and is increasingly applied in medicinal chemistry3–6. The
conventional route to gem-difluorides (R1-CF2-R

2) is the direct fluor-
ination (C−F bond formation), which necessitates pre-functionalized
molecular frameworks and often meets limitations due to functional
group incompatibility7–9. Synthetic chemists aspire to connect two
distinct components with the difluoromethylene moiety, fabricating
difluorides in a modular fashion (Fig. 1a). Difluorocarbene is an
equivalent of bipolar difluoromethylene unit, and its tandem reactions
are among the most extensively employed in difluoromethylene syn-
thon strategies. Reactions involving difluorocarbene typically proceed
via interception by a nucleophile (Nu−), yielding a difluoroalkyl car-
banion (Nu−CF2

−). Subsequently, the carbanion attacks an electrophile
(E+), leading to the construction of a gem-difluoride (Nu−CF2−E)

10–12.

However, this difluorocarbene protocol is limited by the potential
reaction between the nucleophile (Nu−) and electrophile (E+). On the
other hand, synthetic protocols with difluoromethylene diradical13–15

and dianion16–19 synthons also have drawbacks such as the singular
reactivity profile (Fig. 1b).

Bearing two orthogonal reactivity modes, difluoromethylene
radical anion synthon (diFRAS, •CF2

−) has significant advantages in the
modular synthesis of gem-difluorides20. However, in spite of the ben-
efits of the diFRAS, the intrinsic dilemma between its two activation
modes poses a considerable obstacle (Fig. 1c). For the initial intro-
duction of an electrophile to the potential diFRAS, the generation of
carbanion is often challenging; even if the difluoroalkyl carbanion is
successfully generated, its nucleophilicity is low in the absence of an
auxiliary group owing to the negative fluorine effect21. Initiating the
polar reaction encounters a dilemma between carbanion stability and
radical reactivity: on one hand, for highly reactive radical precursors,
such as halides and sulfonium salts, their corresponding unstable
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carbanions have a propensity to decompose into difluorocarbene22–24,
impeding the introduction of electrophiles. On the other hand,
regarding the leaving groups (such as arylthio, arylphosphoryl, and
nitro groups) which are compatible with carbanion generation, the
corresponding radical reactions are usually difficult to be
initiated15,20,25–28 (Fig. 1c). Previous work pertaining to the diFRAS-
involved radical reaction has been only limited to intramolecular
cyclizations20,29–34. The diFRAS-enabled double intermolecular pro-
cesses involving the annexation of two additional molecules to forge
difluorides (R1-CF2-R

2) still remains a challenging task.
In 2016, we reported the first example of sulfone-enabled radical

fluoroalkylation via S−C bond cleavage of difluoromethyl benzothia-
zolyl sulfone (BTSO2CF2H, 1b)35. Although the radical fluoroalkylation
with 1b has found different applications35–45, the instability of the
corresponding carbanion of 1b (BTSO2CF2

−)22 precludes 1b from ser-
ving as an efficient diFRAS. On the other hand, we have found that
difluoromethyl phenyl sulfone (PhSO2CF2H, 1a), a readily available and
easy-to-handle compound46, can serve as a robust nucleophilic
difluoroalkylation reagent47–49 for various electrophiles such as alkyl
halides50,51, disulfides18, aldehydes, ketones52,53, and imine54,55. The
obtained products (PhSO2CF2R) constitute a library of broad range of
fluoroalkyl sulfones, and therefore, we envisioned that 1a could be
developed as a privileged diFRAS if we can tackle the challenge of
the homolytic cleavage of the S−C bond of PhSO2−CF2R to generate
difluoroalkyl radical species (•CF2R). Herein, we reported a visible
light-promoted desulfonylalkylation of the phenyl sulfones to

generate difluoroalkyl radicals. Merging nucleophilic (phenylsulfonyl)
difluoromethylation of electrophiles with a sequential radical coupling
with radical acceptors,we designed a strategy formodular synthesis of
gem-difluorides using PhSO2CF2H as a diFRAS that introduces two
distinct components and unlocks great chemical complexity (Fig. 1d).

Results
Reaction optimization
In light of the radical-anion-promoted desulfonylation and the
potential risk of uncontrolled overreduction of fluoroalkyl radical by
harsh reductants (e.g., Na-Hg, Mg-HOAc)56–58, robust yet mild condi-
tions are crucial for the radical cleavage of the PhSO2–CF2R bond59.
Photocatalysis is a powerful tool in radical chemistry60–62, and most
processes in which sulfones break to generate radicals revolve around
photocatalysis24,35–43,45,63,64. Using vinylphenyldimethylsilane (2a) as a
radical acceptor, we explored the hydrofluoroalkylation with functio-
nalizedphenyl sulfones (1c) obtained from the nucleophilic additionof
propionaldehyde with PhSO2CF2H

52 (Table 1). BTSO2CF2H (1b), a
widely-used fluoroalkyl radical precursor, and PhSO2CF2H (1a) were
also tested under the series of conditions. BTSO2CF2H showed a
moderate to good reactivity in various conditions (Table 1, entries 1-6).
Meanwhile, phenyl sulfones 1a and 1c were hardly activated, and
either no target product or only a small amount of the target
product was obtained. Inspired by radical defluorination of
trifluoromethylarenes65,66, potassium formate was applied as a reduc-
tant to react with phenyl sulfones, affording the products in moderate

Fig. 1 | Synthesis of gem-difluorides. a Synthetic route to gem-difluorides and its
bioisostere. b Previously developed difluoromethylene synthon. c Challenges for
difluoromethylene radical anion synthon (diFRAS). d This work: PhSO2CF2H as

diFRAS for modular synthesis of gem-difluorides with chemical complexity. FG
functional group, LG leaving group, PG protecting group.
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yields67–69 (Table 1, entry 7). Subsequently, it was discovered that when
2-naphthalenethiol (2-NpSH) was used as a hydrogen atom transfer
(HAT) catalyst, a moderate yield could still be observed without
additional expensive photocatalysts70 (Table 1, entries 8,9). Using
DMSO as solvent resulted in better yields (Table 1, entry 10). During
our investigation, the catalytic activity of arenethiol as both photo-
catalyst and HAT catalyst was reported by Shang71,72 and Molander73,74.
The catalytic performance of other arenethiols was evaluated, and all
showed lower activity compared to 2-NpSH (Table 1, entry 11; see
Supplementary Information, Table S1 for performance of additional
arenethiols). Finally, when blue lightwas replacedwith themostwidely
usedwhite light, it gave the products in the highest yield (Table 1, entry
12). Hence, 2-NpSH/HCO2K in DMSO under white light irradiation was
identified as the optimal condition.

Substrate scope
The robustness of the optimized reaction conditions was illustrated
across the substrate scope (Fig. 2). Initially, evaluation was conducted
on the sulfone derivatives thatwereobtained through the nucleophilic
addition of PhSO2CF2H (1a)47–49. The sulfones derived from a wide
range of cyclic (3a, 3b), linear (3c), sterically hindered (3d), and aryl
aldehydes (3e), as well as ketone (3f), showed compatibility in our
methodology. This reaction was also applicable to sulfones obtained
through cascade cyclization (3g) (see Supplementary Information, Fig.
S4 and Table S3) and Michael addition (3h). Imine-derived sulfones
enabled the synthesis of β-amino-α,α-difluorides (3i-3l). Amino and
silyl groups were tolerated in the method (3m, 3n). Notably, naturally
occurring bioactive motifs could be coupled to either radical or anion
ends of diFRAS. The incorporation of radical linkers like quinine (3o),
and electrophilic linkers, for instance, pregnenolone (3p), 5a-
cholestan-3-one (3q), estrone (3r) and fenofibrate (3s) into diFRAS
was demonstrated. Because of steric hindrance, several of their

corresponding radicals preferentially abstract hydrogen atoms in HAT
catalysts rather than react with alkenes.

A comprehensive evaluation has been conducted on sulfone
derivatives (derived from substitutions involving PhSO2CF2H)

18,50,51,75,
showcasing their potential applications in organic synthesis (Fig. 3).
The coupling proceeded effectively for sulfones adorned with a distal
hydroxyl group derived from cyclic sulfates (4a–4c). Linear difluor-
oalkyl sulfones, obtained from the substitution reactions between
PhSO2CF2H and alkyl halides, were also compatible with this protocol
(4d–4i). Arylthio-modified sulfones derived from disulfides were like-
wise converted into SCF2-containing species (4j–4l), underscoring the
broad functional group tolerance of this approach. The scope of
radical acceptors featuring alkene moieties was also explored with
various functional groups such as sulfonyl (4m), amino (4n), hydroxy
(4o,4p), and carboxylic acid (4q). The methodology can be extended
to drug derivatives, including alibendol (4r), ibuprofen (4s), taren-
flurbil (4t), and paclitaxel (4u). The inherent chemical versatility of
hydroxyl groups facilitates further derivatization of γ-hydroxyl-α,α-
difluoroalkyl phenyl sulfones, underscoring their potential for struc-
tural modification. A peptide-embellished difluoroalkyl moiety was
integrated into a paclitaxel derivative, linking two bioactive motifs via
diFRAS (4v). To further substantiate the synthetic utility, we synthe-
sized a bioisostere of pitolisant (4w), an FDA-approved drug for the
treatment of narcolepsy76, wherein the oxygen was replaced by a
difluoromethylene group.

Apart from employing alkenes as radical acceptors, we delved
deeper into investigating the feasibility of our method with different
types of radical acceptors (Fig. 4). Our research efforts were centered
around the construction of CF2−S structure, which not only holds
critical importance in pharmaceutical chemistry but also garners
substantial interest among synthetic chemists77–84. With DBU as a base
in lieu of a reductive formate, we expanded the scope of radical

Table 1 | Optimization of reaction conditions

Entry Conditions Yield (%)

1a 1b 1c

1 PTH, TTMSS, CySH, K2CO3, MeCN ND 41 ND

2 PTH, 1,4-CHD, CySH, K2CO3, MeCN 2 54 ND

3 PTH, PhSiH3, CySH, K2CO3, MeCN 10 67 2

4 4-CzIPN, PhSiH3, CySH, K2CO3, MeCN 17 44 16

5 Ru(bpy)3Cl2·6H2O, PhSiH3, CySH, K2CO3, MeCN 9 52 ND

6 Ir(ppy)3, PhSiH3, CySH, K2CO3, MeCN 22 52 23

7 Ir(ppy)3, HCO2K, CySH, DMF 60 55 45

8 Ir(ppy)3, HCO2K, 2-NpSH, DMF 47 51 63

9 2-NpSH, HCO2K, DMF 54 54 58

10 2-NpSH, HCO2K, DMSO 72 79 87

11 p-MeOC6H4SH, HCO2K, DMSO 25 76 21

12a 2-NpSH, HCO2K, DMSO 90 79 89

Reaction conditions: sulfone 1 (0.4mmol, 2.0 equiv), alkene 2a (0.2mmol, 1.0 equiv), photocatalysis, thiol (20mol%), reductant (3.0 equiv), K2CO3 (2.0 equiv), solvent (1.6mL), blue LED, room
temperature, 18 h. PC: PTH (10mol%), 4-CzlPN (0.2mol%), Ru(bpy)3Cl2·6H2O (0.2mol%), Ir(ppy)3 (0.2mol%). All yields were based on 19F NMR analysis with PhCF3 as an internal standard.
PTH 10-phenyl-10H-phenothiazine, TTMSS tris(trimethylsilyl)silane, CySH cyclohexanethiol, 4-CzlPN 1,2,3,5-tetrakis(carbazol-9-yl)−4,6-dicyanobenzene, 1.4-CHD 1,4-cyclohexadiene, Ru(bpy)3Cl2·6H2O
tris(2,2’-bipyridyl)ruthenium(II) Chloride Hexahydrate, Ir(ppy)3 tris(2-phenylpyridine)iridium, 2-NpSH 2-naphthalenethiol, p-MeOC6H4SH 4-methoxybenzenethiol, ND not detected.
aWhite LED instead of blue LED as light source.
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acceptors to include arenethiols (5a-5e). Sulfones 1-4a underwent
reactions with various thiophenols to produce a series of thioethers
(5f–5o) with the additional photocatalyst Ir(ppy)3 under blue LED. In
addition to electrically neutral arenethiols, both electron-rich and
electron-deficient ones proved to be effective coupling partners in this
reaction. Ortho- and meta-substituted and multi-substituted are-
nethiols exhibited compatibility under the reaction conditions (5k,
5m–5o). Remarkably, Ar-CF3 was stable under the conditions (5l–5n),
experiencing minimal defluorination. Furthermore, the conversion of
2-PySH (5p), a prevalent structural motif in numerous bioactive
molecules85, was successfully conducted.

In scenarios without radical acceptors, the generation of
difluoromethyl-containing products can be achieved via hydro-
desulfonylation process from sulfone derivatives. Conventionally, this
transformation was accomplished under acidic conditions employing
highly reactive metals such as sodium amalgam and magnesium56–58.
Herein, our tactic offers a moderate and efficient method for con-
verting a (phenylsulfonyl)difluoromethyl group to a difluoromethyl
group (Figs. 5 and 6a–i).

Besides a range of structurally diverse fluoroalkyl sulfones, the
parent sulfone PhSO2CF2H (1a) also proved to be suitable for the
reaction conditions (Fig. 6). The hydrodifluoromethylation of alkenes

demonstrated commendable functional group tolerance (7a–7m), as
observed with the sulfone derivatives (Figs. 2 and 3). Difluor-
omethylation of arenethiol (7n) could be achieved following the pro-
cedure outlined in Fig. 4. Late-stage modification of a range of
pharmaceutical compounds, namely tarenflurbil (7o), oxaprozin (7p),
ibuprofen (7q), mefenamic acid (7r) and alibendol (7s), and naturally
occurring molecules, such as allylestrenol (7t), boldenone undecyle-
nate (7u) and caryophyllene oxide (7v), was also found to be fruit-
ful (Fig. 6).

Synthetic applications
When sabinene, bearing a radical clock, was subjected to the reactions,
the cyclopropane ring-opening product (8a) was isolated with a 5:1
selectivity for the 6-membered over the 5-membered ring (Fig. 7a). The
methodology also lightened a route to the synthesis of saturated rings
via radical cyclization of unconjugated dienes. Octahydropentalene
(8b) was constructed following the tactic from cycloocta-1,5-diene
(Fig. 7b). Of particular note, sunlight, the most ubiquitous and cost-
free light source, proved highly effective in promoting the transfor-
mation (Fig. 7c). The practicality of thismethod was further confirmed
through a gram-scale synthesis of gem-difluorides in a good
yield (Fig. 7d).

Fig. 2 | Scope of gem-difluorides from sulfones generated via additions using alkenes as radical acceptors.Reaction conditions: 2 (0.5mmol, 1.0 equiv), 1 (2.0 equiv),
2-NpSH (20mol%), HCO2K (3.0 equiv), DMSO (4mL), white LED, room temperature, 18 h. All yields are isolated yields. a1 (0.5mmol, 1.0 equiv), 2 (2.0 equiv).
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Fig. 3 | Scope of gem-difluorides from sulfones generated via substitutions
using alkenes as radical acceptors.Reaction conditions: 2 (0.5mmol, 1.0 equiv), 1
(2.0 equiv), 2-NpSH (20mol%), HCO2K (3.0 equiv), DMSO (4mL), white LED, room

temperature, 18 h. All yields are isolated yields. aK2CO3 (1.0 equiv) as an additive.
bThe reaction was conducted on 0.2mmol scale.
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Mechanistic investigation
The UV-vis absorption spectra unambiguously show that
2-napthlanenethiolate exhibits absorption onset wavelength at
487 nm, which falls within the visible light range. Additionally, it
indicates that the photoexcitation of 2-NpS− is more facile compared
to reported arenethiolates71–74, as the latter necessitate irradiation at
shorter wavelengths for excitation. Additionally, although p-
MeOC6H4SH showed low activity under 450 nm blue LED irradiation
(Table 1, entry 11), the thiol effectively catalyzed the reaction under
420 nm violet LED irradiation in 79% yield (see supplementary
information, Table S5, entry 3). The negligible hypsochromic shift

observed between iv and v (as shown in Fig. 7e) supports that the
thiolate directly participates in photoexcitation without undergoing
electron donor-acceptor (EDA) complexation. Based on the spectra
and electrochemical data (Ep/2(2-NpS

•/2-NpS−) = 0.09 V, see supple-
mentary information, Fig. S13), strong reducibility of the excited
thiolate was confirmed (Ecal(2-NpS

•/[2-NpS−]*) = −2.49 V)86. The low
quantum yield (Φ = 0.20) does not strongly support a chain process
(see Supplementary Information 2.4.4). In reference to previous
reports65,66,71, we propose a thiol-catalyzed reductive radical
mechanism (Fig. 7f). Upon photoexcitation, thiolate (2-NpS−) transi-
tions to its excited state [2-NpS−]*. This strong reducing agent [2-
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Fig. 6 | Scope of hydrodifluoromethylation of alkenes. Reaction conditions: 2 (0.5mmol, 1.0 equiv), 1 (2.0 equiv), 2-NpSH (20mol%), HCO2K (3.0 equiv), DMSO (4mL),
white LED, room temperature, 18 h. All yields are isolated yields. aAdditional H2O (0.5mL) was added. bFollowing conditions for construction of CF2-S bond in Fig. 4.
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NpS−]* readily undergoes a single electron transfer (SET) to a sulfone,
resulting in the generation of a fluoroalkyl radical and a thiyl radical
(2-NpS•). The thiyl radical can then undergo a tandem reaction with
formate, yielding a carbon dioxide radical anion (CO2

•−) and regen-
erating the thiolate. Alternatively, the thiyl radical (2-NpS•) can also
undergo SET process with the carbon dioxide radical anion (CO2

•−),
leading to the regeneration of the thiolate (2-NpS−). Meanwhile, the
alkene synchronously reacts with the fluoroalkyl radical, forming an
adduct intermediate. As a hydrogen atom transfer (HAT) catalyst, the
thiol (2-NpSH) facilitates the transfer of a hydrogen atom to the
adduct intermediate, culminating in the formation of gem-difluorides
(3,4). Besides alkenes, the fluoroalkyl radical may be converted to
ArSCF2R (5) with a thiyl radical (see supplementary information 2.4.3
for more details). Additionally, the fluoroalkyl radical can be directly
hydrogenated to generate RCF2H (6).

Discussion
In conclusion, we discover PhSO2CF2H (1a), a readily available reagent,
as a remarkably versatile difluoromethylene radical anion synthon

(diFRAS, •CF2
−), which serves as an efficient -CF2- bridge between an

electrophile and a radical acceptor. Naturally occurringmolecules and
pharmaceutically relevant molecules can be late-stage functionalized
by either radical or anion end of the diFRAS (•CF2

−. This synthetic
protocol not only offers a powerful and practical tool for the assembly
of a wide range of structurally diverse gem-difluorides (R1-CF2-R

2), it
also provides new insights into the privileged chemical reactivities of
fluoroalkyl sulfones.

Methods
General procedure for incorporation of an alkene with sulfone 1
To a dry Schlenk tube were added 2-Naphthalenethiol (0.1mmol,
20mol%) and potassium formate (1.5mmol, 3.0 equiv), alkene
(0.5mmol, 1.0 equiv), sulfone 1 (1.0mmol, 2.0 equiv) and dry DMSO
(4.0mL) under argon atmosphere. The mixture was stirred under
irradiationwith 10Wwhite LED for 18 h at room temperature. After the
reaction was complete, water and brine were added and the mixture
was extracted with diethyl ether three times. The combined extracts
were dried over anhydrous Na2SO4, filtered, and concentrated. The

Fig. 7 | Applications andmechanistic studies. aRadical clock reaction.bRadical cyclization of unconjugateddienes. c Sunshine-induceddifluoroalkylation.dGram-scale
reaction. e UV-vis absorption spectra of species in the transformation and oxidative quenching cycle of 2-napthalenethiolate. f Proposed mechanism.
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residue was purified by column chromatography on silica gel to afford
the product.

General procedure for incorporation of an arenethiol with
sulfone 1
To a dry Schlenk tube were added arenethiol (0.5mmol, 1.0 equiv),
sulfone 1 (1.0mmol, 2.0 equiv), fac-Ir(ppy)3 (0.001mmol, 0.2mol%),
DBU (1.0mmol, 2.0 equiv) and dry DMSO (4.0mL) under argon
atmosphere. Themixturewas stirred under irradiationwith 10Wwhite
LED for 18 h at room temperature. After the reaction was complete,
water andbrinewereadded and themixturewas extractedwith diethyl
ether three times. The combined extracts were dried over anhydrous
Na2SO4, filtered, and concentrated. The residue was purified by col-
umn chromatography on silica gel to afford the product.

General procedure for hydrodesulfonylation of sulfone 1
To a dry Schlenk tube were added 2-Naphthalenethiol (0.05mmol,
10mol%) and potassium formate (1.5mmol, 3.0 equiv), sulfone 1
(0.5mmol, 1.0 equiv), and dry DMSO (4.0mL) under argon atmo-
sphere. The mixture was stirred under irradiation with 10Wwhite LED
for 18 h at room temperature. After the reaction was complete, water
and brinewere added and themixturewas extractedwith diethyl ether
three times. The combined extracts were dried over anhydrous
Na2SO4, filtered, and concentrated. The residue was purified by col-
umn chromatography on silica gel to afford the product.

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and its Supplementary Information files.
Crystallographic data for the structures of sulfone 1i (precursor of 3g)
reported in this article have been deposited at the Cambridge Crys-
tallographic Data Centre (CCDC), under deposition numbers CCDC
2452837. Copies of the data can be obtained free of charge via https://
www.ccdc.cam.ac.uk/structures/. Experimental details and the spec-
troscopic data of the corresponding compounds are provided in the
Supplementary Information. All data supporting the study are avail-
able from the corresponding author on request.
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