

# Modular synthesis of $\text{CF}_2$ -containing compounds with $\text{PhSO}_2\text{CF}_2\text{H}$ reagent through difluoromethylene radical anion synthon strategy

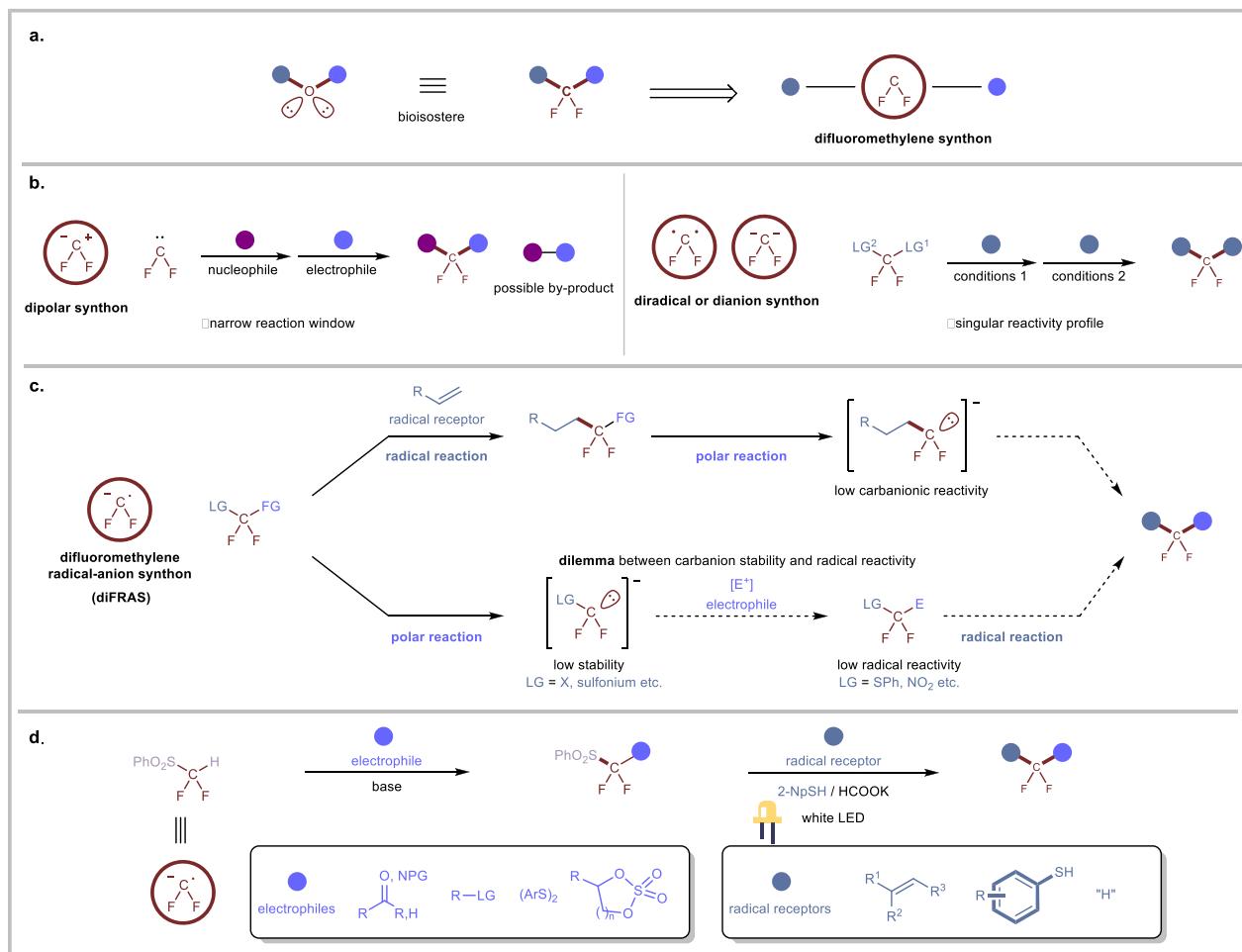
Received: 26 March 2025

Accepted: 31 July 2025

Published online: 19 August 2025

 Check for updates

Shuo Sun<sup>1,3</sup>, Rulong Jia<sup>1,2,3</sup>, Xin Zhou<sup>1</sup>, Zhongyi Wang<sup>1</sup>, Jian Rong<sup>1</sup>, Chuanfa Ni<sup>1</sup> & Jinbo Hu<sup>1,2</sup> 


Difluoromethylene moiety has gained widespread applications in pharmaceuticals, agrochemicals, and materials owing to its augmented lipophilicity and being bioisosteric to ethereal oxygen. Possessing two orthogonal reactivity modes for bridging an electrophile and a radical acceptor to give *gem*-difluorides ( $\text{R}^1\text{-CF}_2\text{-R}^2$ ), the efficient difluoromethylene radical anion synthon (diFRAS) has been long sought after. In this work, we successfully utilize the readily available difluoromethyl phenyl sulfone ( $\text{PhSO}_2\text{CF}_2\text{H}$ ) to couple with electrophiles and radical acceptors, thereby enabling  $\text{PhSO}_2\text{CF}_2\text{H}$  to serve as a novel diFRAS in organic synthesis. The generation of radicals ( $\cdot\text{CF}_2\text{R}$ ) via visible light-promoted homolytic cleavage of C–S bonds in (phenylsulfonyl)difluoromethylated derivatives ( $\text{PhSO}_2\text{CF}_2\text{R}$ ) is the linchpin in the diFRAS strategy to construct *gem*-difluorides ( $\text{R}^1\text{-CF}_2\text{-R}^2$ ) with structural complexity.

The incorporation of fluorine into pharmaceutical candidates often leads to improvements in metabolic stability, lipophilicity, and augmented biological activity<sup>1,2</sup>. Among fluorinated motifs, difluoromethylene has been known to serve as a bioisostere of ethereal oxygen and is increasingly applied in medicinal chemistry<sup>3–6</sup>. The conventional route to *gem*-difluorides ( $\text{R}^1\text{-CF}_2\text{-R}^2$ ) is the direct fluorination (C–F bond formation), which necessitates pre-functionalized molecular frameworks and often meets limitations due to functional group incompatibility<sup>7–9</sup>. Synthetic chemists aspire to connect two distinct components with the difluoromethylene moiety, fabricating difluorides in a modular fashion (Fig. 1a). Difluorocarbene is an equivalent of bipolar difluoromethylene unit, and its tandem reactions are among the most extensively employed in difluoromethylene synthon strategies. Reactions involving difluorocarbene typically proceed via interception by a nucleophile ( $\text{Nu}^-$ ), yielding a difluoroalkyl carbanion ( $\text{Nu-}\text{CF}_2^-$ ). Subsequently, the carbanion attacks an electrophile ( $\text{E}^+$ ), leading to the construction of a *gem*-difluoride ( $\text{Nu-}\text{CF}_2\text{-E}^+$ )<sup>10–12</sup>.

However, this difluorocarbene protocol is limited by the potential reaction between the nucleophile ( $\text{Nu}^-$ ) and electrophile ( $\text{E}^+$ ). On the other hand, synthetic protocols with difluoromethylene diradical<sup>13–15</sup> and dianion<sup>16–19</sup> synthons also have drawbacks such as the singular reactivity profile (Fig. 1b).

Bearing two orthogonal reactivity modes, difluoromethylene radical anion synthon (diFRAS,  $\cdot\text{CF}_2^-$ ) has significant advantages in the modular synthesis of *gem*-difluorides<sup>20</sup>. However, in spite of the benefits of the diFRAS, the intrinsic dilemma between its two activation modes poses a considerable obstacle (Fig. 1c). For the initial introduction of an electrophile to the potential diFRAS, the generation of carbanion is often challenging; even if the difluoroalkyl carbanion is successfully generated, its nucleophilicity is low in the absence of an auxiliary group owing to the negative fluorine effect<sup>21</sup>. Initiating the polar reaction encounters a dilemma between carbanion stability and radical reactivity: on one hand, for highly reactive radical precursors, such as halides and sulfonium salts, their corresponding unstable

<sup>1</sup>State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. <sup>2</sup>Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China. <sup>3</sup>These authors contributed equally: Shuo Sun, Rulong Jia.  e-mail: [jinbohu@sioc.ac.cn](mailto:jinbohu@sioc.ac.cn)



**Fig. 1 | Synthesis of gem-difluorides.** **a** Synthetic route to gem-difluorides and its bioisostere. **b** Previously developed difluoromethylene synthon. **c** Challenges for difluoromethylene radical anion synthon (diFRAS). **d** This work:  $\text{PhSO}_2\text{CF}_2\text{H}$  as

diFRAS for modular synthesis of gem-difluorides with chemical complexity. FG functional group, LG leaving group, PG protecting group.

carbanions have a propensity to decompose into difluorocarbene<sup>22–24</sup>, impeding the introduction of electrophiles. On the other hand, regarding the leaving groups (such as arylthio, arylphosphoryl, and nitro groups) which are compatible with carbanion generation, the corresponding radical reactions are usually difficult to be initiated<sup>15,20,25–28</sup> (Fig. 1c). Previous work pertaining to the diFRAS-involved radical reaction has been only limited to intramolecular cyclizations<sup>20,29–34</sup>. The diFRAS-enabled double intermolecular processes involving the annexation of two additional molecules to forge difluorides ( $\text{R}^1-\text{CF}_2-\text{R}^2$ ) still remains a challenging task.

In 2016, we reported the first example of sulfone-enabled radical fluoroalkylation via S–C bond cleavage of difluoromethyl benzothiazolyl sulfone (BTSO<sub>2</sub>CF<sub>2</sub>H, **1b**)<sup>35</sup>. Although the radical fluoroalkylation with **1b** has found different applications<sup>35–45</sup>, the instability of the corresponding carbanion of **1b** (BTSO<sub>2</sub>CF<sub>2</sub><sup>–</sup>)<sup>22</sup> precludes **1b** from serving as an efficient diFRAS. On the other hand, we have found that difluoromethyl phenyl sulfone (PhSO<sub>2</sub>CF<sub>2</sub>H, **1a**), a readily available and easy-to-handle compound<sup>46</sup>, can serve as a robust nucleophilic difluoroalkylation reagent<sup>47–49</sup> for various electrophiles such as alkyl halides<sup>50,51</sup>, disulfides<sup>18</sup>, aldehydes, ketones<sup>52,53</sup>, and imine<sup>54,55</sup>. The obtained products (PhSO<sub>2</sub>CF<sub>2</sub>R) constitute a library of broad range of fluoroalkyl sulfones, and therefore, we envisioned that **1a** could be developed as a privileged diFRAS if we can tackle the challenge of the homolytic cleavage of the S–C bond of PhSO<sub>2</sub>CF<sub>2</sub>R to generate difluoroalkyl radical species ( $\cdot\text{CF}_2\text{R}$ ). Herein, we reported a visible light-promoted desulfonylation of the phenyl sulfones to

generate difluoroalkyl radicals. Merging nucleophilic (phenylsulfonyl) difluoromethylation of electrophiles with a sequential radical coupling with radical acceptors, we designed a strategy for modular synthesis of gem-difluorides using PhSO<sub>2</sub>CF<sub>2</sub>H as a diFRAS that introduces two distinct components and unlocks great chemical complexity (Fig. 1d).

## Results

### Reaction optimization

In light of the radical-anion-promoted desulfonylation and the potential risk of uncontrolled overreduction of fluoroalkyl radical by harsh reductants (e.g., Na–Hg, Mg–HOAc)<sup>56–58</sup>, robust yet mild conditions are crucial for the radical cleavage of the PhSO<sub>2</sub>–CF<sub>2</sub>R bond<sup>59</sup>. Photocatalysis is a powerful tool in radical chemistry<sup>60–62</sup>, and most processes in which sulfones break to generate radicals revolve around photocatalysis<sup>24,35–43,45,63,64</sup>. Using vinylphenyldimethylsilane (**2a**) as a radical acceptor, we explored the hydrofluoroalkylation with functionalized phenyl sulfones (**1c**) obtained from the nucleophilic addition of propionaldehyde with PhSO<sub>2</sub>CF<sub>2</sub>H<sup>52</sup> (Table 1). BTSO<sub>2</sub>CF<sub>2</sub>H (**1b**), a widely-used fluoroalkyl radical precursor, and PhSO<sub>2</sub>CF<sub>2</sub>H (**1a**) were also tested under the series of conditions. BTSO<sub>2</sub>CF<sub>2</sub>H showed a moderate to good reactivity in various conditions (Table 1, entries 1–6). Meanwhile, phenyl sulfones **1a** and **1c** were hardly activated, and either no target product or only a small amount of the target product was obtained. Inspired by radical defluorination of trifluoromethylarenes<sup>65,66</sup>, potassium formate was applied as a reductant to react with phenyl sulfones, affording the products in moderate

Table 1 | Optimization of reaction conditions



The table shows the optimization of reaction conditions for the synthesis of sulfone derivatives. The first part illustrates the synthesis of **1c** from **1a** and methyl acrylate using LiHMDS and THF-HMPA at -78 °C for 2h. The second part shows the general reaction scheme where a fluoroalkyl sulfone (**1**) reacts with an alkene in the presence of "conditions" (blue LEDs) to form a radical intermediate. The final part shows the structures of **1a**, **1b**, and **1c**.

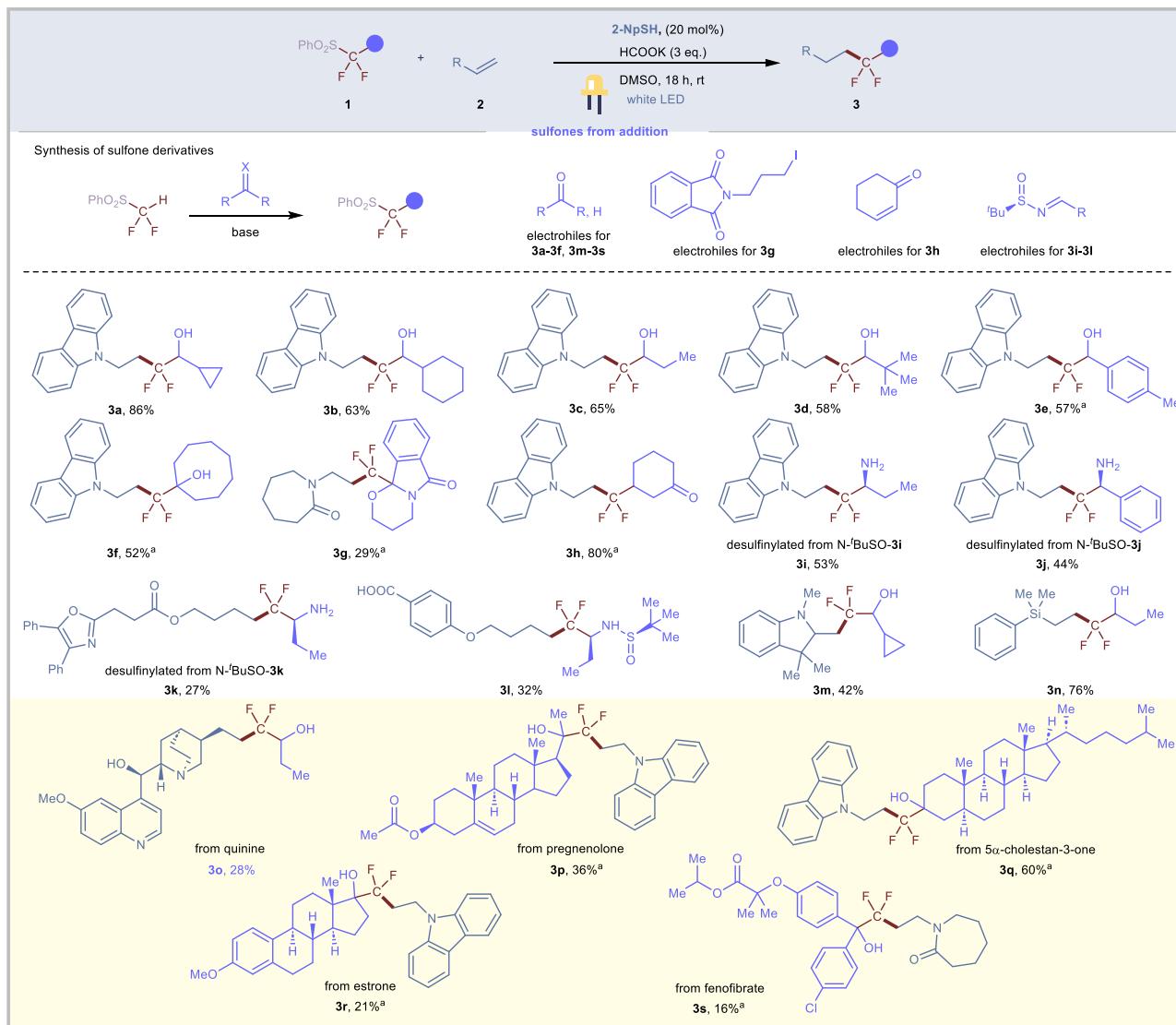
| Entry           | Conditions                                                                                                                | Yield (%) |           |           |
|-----------------|---------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|
|                 |                                                                                                                           | <b>1a</b> | <b>1b</b> | <b>1c</b> |
| 1               | PTH, TTMS, CySH, K <sub>2</sub> CO <sub>3</sub> , MeCN                                                                    | ND        | 41        | ND        |
| 2               | PTH, 1,4-CHD, CySH, K <sub>2</sub> CO <sub>3</sub> , MeCN                                                                 | 2         | 54        | ND        |
| 3               | PTH, PhSiH <sub>3</sub> , CySH, K <sub>2</sub> CO <sub>3</sub> , MeCN                                                     | 10        | 67        | 2         |
| 4               | 4-CzIPN, PhSiH <sub>3</sub> , CySH, K <sub>2</sub> CO <sub>3</sub> , MeCN                                                 | 17        | 44        | 16        |
| 5               | Ru(bpy) <sub>3</sub> Cl <sub>2</sub> ·6H <sub>2</sub> O, PhSiH <sub>3</sub> , CySH, K <sub>2</sub> CO <sub>3</sub> , MeCN | 9         | 52        | ND        |
| 6               | Ir(ppy) <sub>3</sub> , PhSiH <sub>3</sub> , CySH, K <sub>2</sub> CO <sub>3</sub> , MeCN                                   | 22        | 52        | 23        |
| 7               | Ir(ppy) <sub>3</sub> , HCO <sub>2</sub> K, CySH, DMF                                                                      | 60        | 55        | 45        |
| 8               | Ir(ppy) <sub>3</sub> , HCO <sub>2</sub> K, 2-NpSH, DMF                                                                    | 47        | 51        | 63        |
| 9               | 2-NpSH, HCO <sub>2</sub> K, DMF                                                                                           | 54        | 54        | 58        |
| 10              | 2-NpSH, HCO <sub>2</sub> K, DMSO                                                                                          | 72        | 79        | 87        |
| 11              | p-MeOC <sub>6</sub> H <sub>4</sub> SH, HCO <sub>2</sub> K, DMSO                                                           | 25        | 76        | 21        |
| 12 <sup>a</sup> | 2-NpSH, HCO <sub>2</sub> K, DMSO                                                                                          | 90        | 79        | 89        |

Reaction conditions: sulfone **1** (0.4 mmol, 2.0 equiv), alkene **2a** (0.2 mmol, 1.0 equiv), photocation, thiol (20 mol%), reductant (3.0 equiv), K<sub>2</sub>CO<sub>3</sub> (2.0 equiv), solvent (1.6 mL), blue LED, room temperature, 18 h. PC: PTH (10 mol%), 4-CzIPN (0.2 mol%), Ru(bpy)<sub>3</sub>Cl<sub>2</sub>·6H<sub>2</sub>O (0.2 mol%), Ir(ppy)<sub>3</sub> (0.2 mol%). All yields were based on <sup>19</sup>F NMR analysis with PhCF<sub>3</sub> as an internal standard.

PTH 10-phenyl-10H-phenothiazine, TTMS tris(trimethylsilyl)silane, CySH cyclohexanethiol, 4-CzIPN 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene, 1,4-CHD 1,4-cyclohexadiene, Ru(bpy)<sub>3</sub>Cl<sub>2</sub>·6H<sub>2</sub>O tris(2,2'-biphenyl)triruthenium(II) Chloride Hexahydrate, Ir(ppy)<sub>3</sub> tris(2-phenylpyridine)iridium, 2-NpSH 2-naphthalenethiol, p-MeOC<sub>6</sub>H<sub>4</sub>SH 4-methoxybenzenethiol, ND not detected.

<sup>a</sup>White LED instead of blue LED as light source.

yields<sup>67-69</sup> (Table 1, entry 7). Subsequently, it was discovered that when 2-naphthalenethiol (2-NpSH) was used as a hydrogen atom transfer (HAT) catalyst, a moderate yield could still be observed without additional expensive photocatalysts<sup>70</sup> (Table 1, entries 8,9). Using DMSO as solvent resulted in better yields (Table 1, entry 10). During our investigation, the catalytic activity of arenethiol as both photocatalyst and HAT catalyst was reported by Shang<sup>71,72</sup> and Molander<sup>73,74</sup>. The catalytic performance of other arenethiols was evaluated, and all showed lower activity compared to 2-NpSH (Table 1, entry 11; see Supplementary Information, Table S1 for performance of additional arenethiols). Finally, when blue light was replaced with the most widely used white light, it gave the products in the highest yield (Table 1, entry 12). Hence, 2-NpSH/HCO<sub>2</sub>K in DMSO under white light irradiation was identified as the optimal condition.


### Substrate scope

The robustness of the optimized reaction conditions was illustrated across the substrate scope (Fig. 2). Initially, evaluation was conducted on the sulfone derivatives that were obtained through the nucleophilic addition of PhSO<sub>2</sub>CF<sub>2</sub>H (**1a**)<sup>47-49</sup>. The sulfones derived from a wide range of cyclic (**3a**, **3b**), linear (**3c**), sterically hindered (**3d**), and aryl aldehydes (**3e**), as well as ketone (**3f**), showed compatibility in our methodology. This reaction was also applicable to sulfones obtained through cascade cyclization (**3g**) (see Supplementary Information, Fig. S4 and Table S3) and Michael addition (**3h**). Imine-derived sulfones enabled the synthesis of  $\beta$ -amino- $\alpha$ , $\alpha$ -difluorides (**3i**-**3l**). Amino and silyl groups were tolerated in the method (**3m**, **3n**). Notably, naturally occurring bioactive motifs could be coupled to either radical or anion ends of diFRAS. The incorporation of radical linkers like quinine (**3o**), and electrophilic linkers, for instance, pregnenolone (**3p**), 5a-cholestane-3-one (**3q**), estrone (**3r**) and fenofibrate (**3s**) into diFRAS was demonstrated. Because of steric hindrance, several of their

corresponding radicals preferentially abstract hydrogen atoms in HAT catalysts rather than react with alkenes.

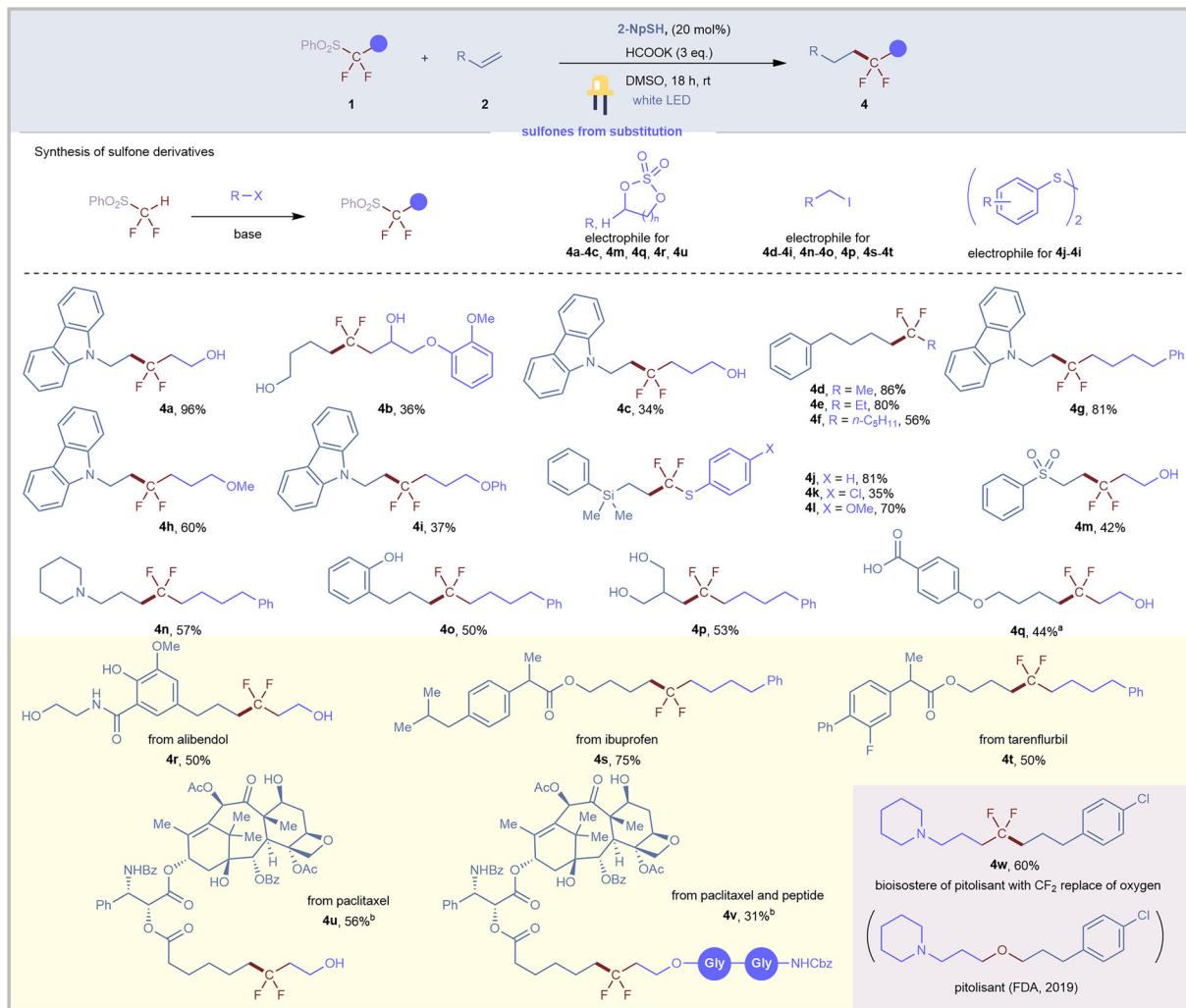
A comprehensive evaluation has been conducted on sulfone derivatives (derived from substitutions involving PhSO<sub>2</sub>CF<sub>2</sub>H)<sup>18,50,51,75</sup>, showcasing their potential applications in organic synthesis (Fig. 3). The coupling proceeded effectively for sulfones adorned with a distal hydroxyl group derived from cyclic sulfates (**4a**-**4c**). Linear difluoroalkyl sulfones, obtained from the substitution reactions between PhSO<sub>2</sub>CF<sub>2</sub>H and alkyl halides, were also compatible with this protocol (**4d**-**4i**). Arylthio-modified sulfones derived from disulfides were likewise converted into SCF<sub>2</sub>-containing species (**4j**-**4l**), underscoring the broad functional group tolerance of this approach. The scope of radical acceptors featuring alkene moieties was also explored with various functional groups such as sulfonyl (**4m**), amino (**4n**), hydroxy (**4o**,**4p**), and carboxylic acid (**4q**). The methodology can be extended to drug derivatives, including alibendol (**4r**), ibuprofen (**4s**), tarenfluril (**4t**), and paclitaxel (**4u**). The inherent chemical versatility of hydroxyl groups facilitates further derivatization of  $\gamma$ -hydroxyl- $\alpha$ , $\alpha$ -difluoroalkyl phenyl sulfones, underscoring their potential for structural modification. A peptide-embellished difluoroalkyl moiety was integrated into a paclitaxel derivative, linking two bioactive motifs via diFRAS (**4v**). To further substantiate the synthetic utility, we synthesized a bioisostere of pitolisant (**4w**), an FDA-approved drug for the treatment of narcolepsy<sup>76</sup>, wherein the oxygen was replaced by a difluoromethylene group.

Apart from employing alkenes as radical acceptors, we delved deeper into investigating the feasibility of our method with different types of radical acceptors (Fig. 4). Our research efforts were centered around the construction of CF<sub>2</sub>-S structure, which not only holds critical importance in pharmaceutical chemistry but also garners substantial interest among synthetic chemists<sup>77-84</sup>. With DBU as a base in lieu of a reductive formate, we expanded the scope of radical



**Fig. 2 | Scope of *gem*-difluorides from sulfones generated via additions using alkenes as radical acceptors.** Reaction conditions: **2** (0.5 mmol, 1.0 equiv), **1** (2.0 equiv), 2-NpSH (20 mol%), HCOOK (3.0 equiv), DMSO (4 mL), white LED, room temperature, 18 h. All yields are isolated yields. <sup>a</sup>**1** (0.5 mmol, 1.0 equiv), **2** (2.0 equiv).

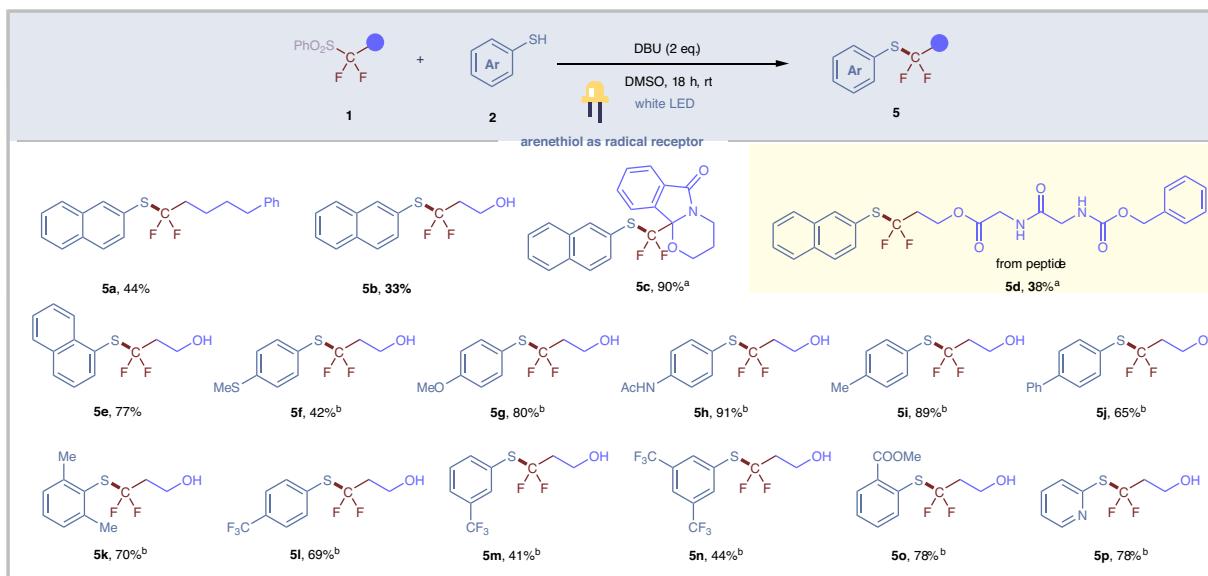
acceptors to include arenethiols (**5a**–**5e**). Sulfones **1a**–**4a** underwent reactions with various thiophenols to produce a series of thioethers (**5f**–**5o**) with the additional photocatalyst Ir(ppy)<sub>3</sub> under blue LED. In addition to electrically neutral arenethiols, both electron-rich and electron-deficient ones proved to be effective coupling partners in this reaction. *Ortho*- and *meta*-substituted and multi-substituted arenethiols exhibited compatibility under the reaction conditions (**5k**, **5m**–**5o**). Remarkably, Ar-CF<sub>3</sub> was stable under the conditions (**5l**–**5n**), experiencing minimal defluorination. Furthermore, the conversion of 2-PySH (**5p**), a prevalent structural motif in numerous bioactive molecules<sup>35</sup>, was successfully conducted.


In scenarios without radical acceptors, the generation of difluoromethyl-containing products can be achieved via hydro-desulfonylation process from sulfone derivatives. Conventionally, this transformation was accomplished under acidic conditions employing highly reactive metals such as sodium amalgam and magnesium<sup>56–58</sup>. Herein, our tactic offers a moderate and efficient method for converting a (phenylsulfonyl)difluoromethyl group to a difluoromethyl group (Figs. 5 and 6a–i).

Besides a range of structurally diverse fluoroalkyl sulfones, the parent sulfone PhSO<sub>2</sub>CF<sub>2</sub>H (**1a**) also proved to be suitable for the reaction conditions (Fig. 6). The hydrodifluoromethylation of alkenes

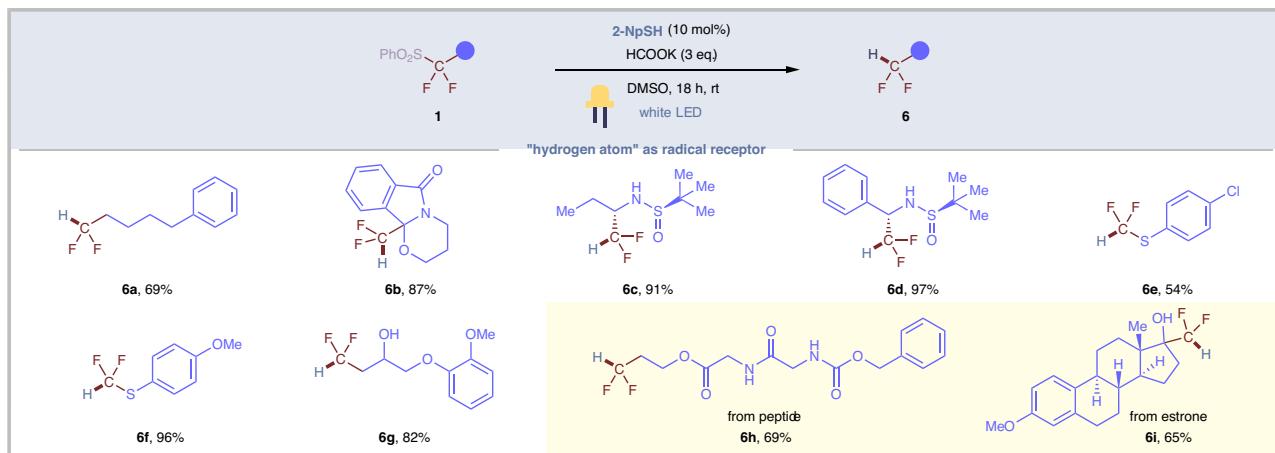
demonstrated commendable functional group tolerance (**7a**–**7m**), as observed with the sulfone derivatives (Figs. 2 and 3). Difluoromethylation of arenethiol (**7n**) could be achieved following the procedure outlined in Fig. 4. Late-stage modification of a range of pharmaceutical compounds, namely tarenfluril (**7o**), oxaprozin (**7p**), ibuprofen (**7q**), mefenamic acid (**7r**) and alibendol (**7s**), and naturally occurring molecules, such as allylestrenol (**7t**), boldenone undecylate (**7u**) and caryophyllene oxide (**7v**), was also found to be fruitful (Fig. 6).

### Synthetic applications

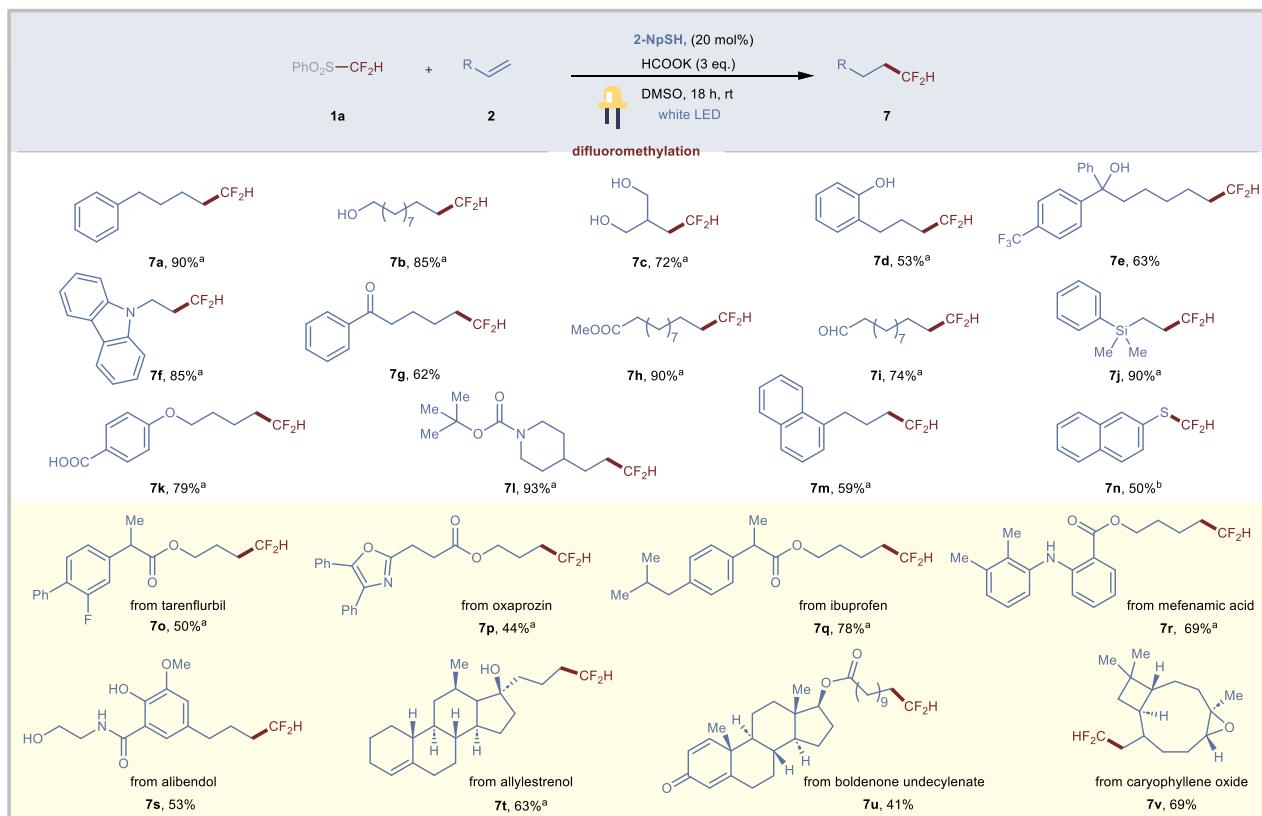

When sabinene, bearing a radical clock, was subjected to the reactions, the cyclopropane ring-opening product (**8a**) was isolated with a 5:1 selectivity for the 6-membered over the 5-membered ring (Fig. 7a). The methodology also lightened a route to the synthesis of saturated rings via radical cyclization of unconjugated dienes. Octahydronentalene (**8b**) was constructed following the tactic from cycloocta-1,5-diene (Fig. 7b). Of particular note, sunlight, the most ubiquitous and cost-free light source, proved highly effective in promoting the transformation (Fig. 7c). The practicality of this method was further confirmed through a gram-scale synthesis of *gem*-difluorides in a good yield (Fig. 7d).

**Fig. 3 | Scope of gem-difluorides from sulfones generated via substitutions**

**using alkenes as radical acceptors.** Reaction conditions: **2** (0.5 mmol, 1.0 equiv), **1** (2.0 equiv), 2-NpSH (20 mol%), HCO<sub>2</sub>K (3.0 equiv), DMSO (4 mL), white LED, room


temperature, 18 h. All yields are isolated yields. <sup>a</sup>K<sub>2</sub>CO<sub>3</sub> (1.0 equiv) as an additive.

<sup>b</sup>The reaction was conducted on 0.2 mmol scale.

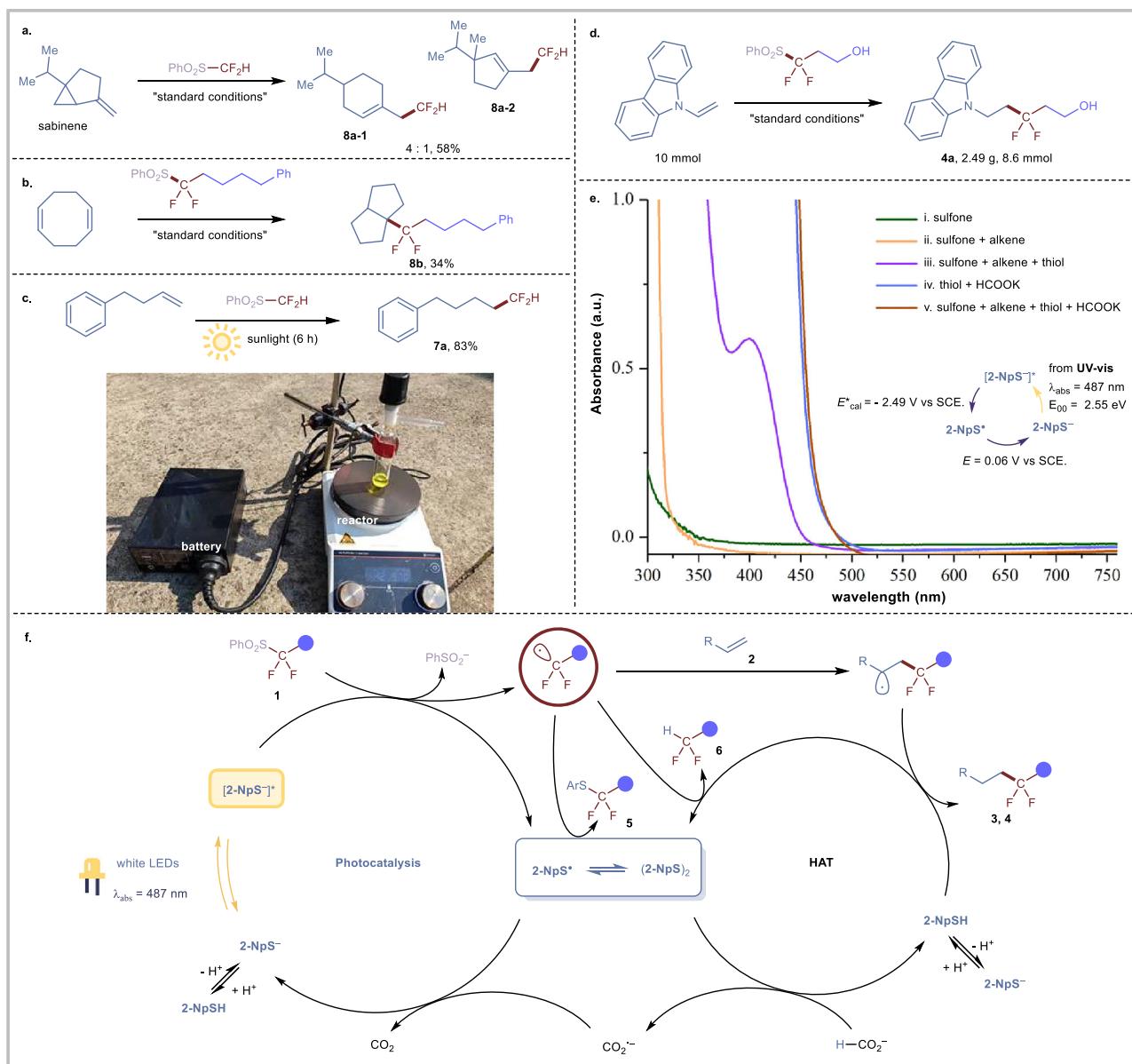

**Fig. 4 | Scope of gem-difluorides from sulfones with thiols as radical acceptors.**

Reaction conditions: **2** (0.5 mmol, 1.0 equiv), **1** (2.0 equiv), DBU (2.0 equiv), DMSO (4 mL), white LED, room temperature, 18 h. All yields are isolated yields. <sup>a</sup>1

(0.5 mmol, 1.0 equiv), **2** (2.0 equiv), <sup>b</sup>fac-Ir(ppy)3 (0.2 mol%) as an additive, blue LED instead of white LED. DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.



**Fig. 5 | Scope of *gem*-difluorides from sulfones with hydrogen atom as radical acceptor.** Reaction conditions: 1 (0.5 mmol), 2-naphthalenethiol (10 mol%), HCOOK (3.0 equiv), DMSO (4 mL), white LED, room temperature, 18 h. All yields are isolated yields.




**Fig. 6 | Scope of hydrodifluoromethylation of alkenes.** Reaction conditions: 2 (0.5 mmol, 1.0 equiv), 1 (2.0 equiv), 2-NpSH (20 mol%), HCOOK (3.0 equiv), DMSO (4 mL), white LED, room temperature, 18 h. All yields are isolated yields. <sup>a</sup>Additional H<sub>2</sub>O (0.5 mL) was added. <sup>b</sup>Following conditions for construction of CF<sub>2</sub>-S bond in Fig. 4.

### Mechanistic investigation

The UV-vis absorption spectra unambiguously show that 2-naphthalenethiol exhibits absorption onset wavelength at 487 nm, which falls within the visible light range. Additionally, it indicates that the photoexcitation of 2-NpS<sup>−</sup> is more facile compared to reported arenethiolates<sup>71–74</sup>, as the latter necessitate irradiation at shorter wavelengths for excitation. Additionally, although *p*-MeOC<sub>6</sub>H<sub>4</sub>SH showed low activity under 450 nm blue LED irradiation (Table 1, entry 11), the thiol effectively catalyzed the reaction under 420 nm violet LED irradiation in 79% yield (see supplementary information, Table S5, entry 3). The negligible hypsochromic shift

observed between iv and v (as shown in Fig. 7e) supports that the thiolate directly participates in photoexcitation without undergoing electron donor-acceptor (EDA) complexation. Based on the spectra and electrochemical data ( $E_{p/2}(2\text{-NpS}^{\cdot}/2\text{-NpS}^{\cdot}) = 0.09$  V, see supplementary information, Fig. S13), strong reducibility of the excited thiolate was confirmed ( $E_{\text{cal}}(2\text{-NpS}^{\cdot}/[2\text{-NpS}^{\cdot}]^{\cdot}) = -2.49$  V)<sup>86</sup>. The low quantum yield ( $\Phi = 0.20$ ) does not strongly support a chain process (see Supplementary Information 2.4.4). In reference to previous reports<sup>65,66,71</sup>, we propose a thiol-catalyzed reductive radical mechanism (Fig. 7f). Upon photoexcitation, thiolate (2-NpS<sup>−</sup>) transitions to its excited state [2-NpS<sup>·</sup>]<sup>·</sup>. This strong reducing agent [2-



**Fig. 7 | Applications and mechanistic studies.** **a** Radical clock reaction. **b** Radical cyclization of unconjugated dienes. **c** Sunshine-induced difluoroalkylation. **d** Gram-scale reaction. **e** UV-vis absorption spectra of species in the transformation and oxidative quenching cycle of 2-naphthalenethiolate. **f** Proposed mechanism.

$\text{NpS}^*_{\text{1}}$  readily undergoes a single electron transfer (SET) to a sulfone, resulting in the generation of a fluoroalkyl radical and a thiol radical ( $2\text{-NpS}^*$ ). The thiol radical can then undergo a tandem reaction with formate, yielding a carbon dioxide radical anion ( $\text{CO}_2^-$ ) and regenerating the thiolate. Alternatively, the thiol radical ( $2\text{-NpS}^*$ ) can also undergo SET process with the carbon dioxide radical anion ( $\text{CO}_2^-$ ), leading to the regeneration of the thiolate ( $2\text{-NpS}^-$ ). Meanwhile, the alkene synchronously reacts with the fluoroalkyl radical, forming an adduct intermediate. As a hydrogen atom transfer (HAT) catalyst, the thiol ( $2\text{-NpSH}$ ) facilitates the transfer of a hydrogen atom to the adduct intermediate, culminating in the formation of *gem*-difluorides (**3,4**). Besides alkenes, the fluoroalkyl radical may be converted to  $\text{ArSCF}_2\text{R}$  (**5**) with a thiol radical (see supplementary information 2.4.3 for more details). Additionally, the fluoroalkyl radical can be directly hydrogenated to generate  $\text{RCF}_2\text{H}$  (**6**).

## Discussion

In conclusion, we discover  $\text{PhO}_2\text{S}-\text{CF}_2\text{H}$  (**1a**), a readily available reagent, as a remarkably versatile difluoromethylene radical anion synthon

(diFRAS,  $\cdot\text{CF}_2^-$ ), which serves as an efficient  $\cdot\text{CF}_2^-$  bridge between an electrophile and a radical acceptor. Naturally occurring molecules and pharmaceutically relevant molecules can be late-stage functionalized by either radical or anion end of the diFRAS ( $\cdot\text{CF}_2^-$ ). This synthetic protocol not only offers a powerful and practical tool for the assembly of a wide range of structurally diverse *gem*-difluorides ( $\text{R}^1\text{-CF}_2\text{-R}^2$ ), it also provides new insights into the privileged chemical reactivities of fluoroalkyl sulfones.

## Methods

### General procedure for incorporation of an alkene with sulfone **1**

To a dry Schlenk tube were added 2-Naphthalenethiol (0.1 mmol, 20 mol%), and potassium formate (1.5 mmol, 3.0 equiv), alkene (0.5 mmol, 1.0 equiv), sulfone **1** (1.0 mmol, 2.0 equiv) and dry DMSO (4.0 mL) under argon atmosphere. The mixture was stirred under irradiation with 10 W white LED for 18 h at room temperature. After the reaction was complete, water and brine were added and the mixture was extracted with diethyl ether three times. The combined extracts were dried over anhydrous  $\text{Na}_2\text{SO}_4$ , filtered, and concentrated. The

residue was purified by column chromatography on silica gel to afford the product.

### General procedure for incorporation of an arenethiol with sulfone 1

To a dry Schlenk tube were added arenethiol (0.5 mmol, 1.0 equiv), sulfone **1** (1.0 mmol, 2.0 equiv), *fac*-Ir(ppy)<sub>3</sub> (0.001 mmol, 0.2 mol%), DBU (1.0 mmol, 2.0 equiv) and dry DMSO (4.0 mL) under argon atmosphere. The mixture was stirred under irradiation with 10 W white LED for 18 h at room temperature. After the reaction was complete, water and brine were added and the mixture was extracted with diethyl ether three times. The combined extracts were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The residue was purified by column chromatography on silica gel to afford the product.

### General procedure for hydrodesulfonylation of sulfone 1

To a dry Schlenk tube were added 2-Naphthalenethiol (0.05 mmol, 10 mol%) and potassium formate (1.5 mmol, 3.0 equiv), sulfone **1** (0.5 mmol, 1.0 equiv), and dry DMSO (4.0 mL) under argon atmosphere. The mixture was stirred under irradiation with 10 W white LED for 18 h at room temperature. After the reaction was complete, water and brine were added and the mixture was extracted with diethyl ether three times. The combined extracts were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. The residue was purified by column chromatography on silica gel to afford the product.

### Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Crystallographic data for the structures of sulfone **1i** (precursor of **3g**) reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2452837. Copies of the data can be obtained free of charge via <https://www.ccdc.cam.ac.uk/structures/>. Experimental details and the spectroscopic data of the corresponding compounds are provided in the Supplementary Information. All data supporting the study are available from the corresponding author on request.

### References

1. Meanwell, N. A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. *J. Med. Chem.* **61**, 5822–5880 (2018).
2. Ogawa, Y., Tokunaga, E., Kobayashi, O., Hirai, K. & Shibata, N. Current contributions of organofluorine compounds to the agrochemical industry. *iScience* **23**, 101467 (2020).
3. Blackburn, G. M., England, D. A. & Kolkmann, F. Monofluoro- and difluoro-methylenebisphosphonic acids: isopolar analogues of pyrophosphoric acid. *J. Chem. Soc. Chem. Commun.* **15**, 930–932 (1981).
4. Blackburn, G. M., Kent, D. E. & Kolkmann, F. The synthesis and metal binding characteristics of novel, isopolar phosphonate analogues of nucleotides. *J. Chem. Soc. Perkin Trans. 1*, 1119–1125 (1984).
5. Xu, Y. et al. Structure–activity relationships of fluorinated lysophosphatidic acid analogues. *J. Med. Chem.* **48**, 3319–3327 (2005).
6. O'Hagan, D., Wang, Y., Skibinski, M. & Slawin, A. M. Z. Influence of the difluoromethylene group (CF<sub>2</sub>) on the conformation and properties of selected organic compounds. *Pure Appl. Chem.* **84**, 1587–1595 (2012).
7. Middleton, W. J. New fluorinating reagents. Dialkylaminosulfur fluorides. *J. Org. Chem.* **40**, 574–578 (1975).
8. Lal, G. S., Pez, G. P., Pesaresi, R. J., Prozonic, F. M. & Cheng, H. Bis(2-methoxyethyl)aminosulfur trifluoride: a new broad-spectrum deoxofluorinating agent with enhanced thermal stability. *J. Org. Chem.* **64**, 7048–7054 (1999).
9. Beaulieu, F. et al. Aminodifluorosulfurinium tetrafluoroborate salts as stable and crystalline deoxofluorinating reagents. *Org. Lett.* **11**, 5050–5053 (2009).
10. Xie, Q. & Hu, J. A journey of the development of privileged difluorocarbene reagents TMSCF<sub>2</sub>X (X = Br, F, Cl) for organic synthesis. *Acc. Chem. Res.* **57**, 693–713 (2024).
11. Dilman, A. D. & Levin, V. V. Difluorocarbene as a building block for consecutive bond-forming reactions. *Acc. Chem. Res.* **51**, 1272–1280 (2018).
12. Zeng, X., Li, Y., Min, Q.-Q., Xue, X.-S. & Zhang, X. Copper-catalysed difluorocarbene transfer enables modular synthesis. *Nat. Chem.* **15**, 1064–1073 (2023).
13. Kostromitin, V. S., Sorokin, A. O., Levin, V. & Dilman, A. D. Aminals as powerful XAT-reagents: activation of fluorinated alkyl chlorides. *Chem. Sci.* **14**, 3229–3234 (2023).
14. Zhang, Z.-Q. et al. Programmable synthesis of difluorinated hydrocarbons from alkenes through a photocatalytic lynchpin strategy. *Chem. Sci.* **14**, 11546–11553 (2023).
15. Reutrakul, V., Thongpaisanwong, T., Tuchinda, P., Kuhakarn, C. & Pohmakotr, M. Difluorophenylsulfanyl methyl radical and difluoromethylene diradical synthons: gem-difluoromethylene building block. *J. Org. Chem.* **69**, 6913–6915 (2004).
16. Beier, P., Alexandrova, A. V., Zibinsky, M. & Surya Prakash, G. K. Nucleophilic difluoromethylation and difluoromethylation of aldehydes and ketones using diethyl difluoromethylphosphonate. *Tetrahedron* **64**, 10977–10985 (2008).
17. Kosobokov, M. D. et al. Geminal silicon/zinc reagent as an equivalent of difluoromethylene bis-carbanion. *Org. Lett.* **16**, 1438–1441 (2014).
18. Prakash, G. K. S., Hu, J., Mathew, T. & Olah, G. A. Difluoromethyl phenyl sulfone as a selective difluoromethylene dianion equivalent: one-pot stereoselective synthesis of *anti*-2,2-difluoropropane-1,3-diols. *Angew. Chem. Int. Ed.* **42**, 5216–5219 (2003).
19. Trifonov, A. L. & Dilman, A. D. Synthesis of difluoroalkylated heteroarenes via difluorocarbene. *Org. Lett.* **23**, 6977–6981 (2021).
20. Li, Y. & Hu, J. Stereoselective difluoromethylation using Me<sub>3</sub>SiCF<sub>2</sub>SPh: synthesis of chiral 2,4-disubstituted 3,3-difluoropyrrolidines. *Angew. Chem. Int. Ed.* **46**, 2489–2492 (2007).
21. Zhang, W., Ni, C. & Hu, J. Selective fluoroalkylation of organic compounds by tackling the “negative fluorine effect”. *Top. Curr. Chem.* **308**, 25–44 (2012).
22. Prakash, G. K. S., Ni, C., Wang, F., Hu, J. & Olah, G. A. From difluoromethyl 2-pyridyl sulfone to difluorinated sulfonates: a protocol for nucleophilic difluoro(sulfonato)methylation. *Angew. Chem. Int. Ed.* **50**, 2559–2563 (2011).
23. Sap, J. B. I. et al. [<sup>18</sup>F]Difluorocarbene for positron emission tomography. *Nature* **606**, 102–108 (2022).
24. Wei, Z., Zheng, W., Wan, X. & Hu, J. Copper-catalyzed enantioselective difluoromethylation-alkynylation of olefins by solving the dilemma between acidities and reduction potentials of difluoromethylating agents. *Angew. Chem. Int. Ed.* **62**, e202308816 (2023).
25. Korth, H.-G., Sustmann, R., Dupuis, J. & Giese, B. Zum Mechanismus der Denitrierung aliphatischer Nitro-Verbindungen mit Trialkylstannyl-Radikalen. Eine ESR-kinetische Untersuchung. *Chem. Ber.* **120**, 1197–1202 (1987).
26. Kashihara, M. et al. Catalytic generation of radicals from nitroalkanes. *Synlett* **34**, 1482–1486 (2022).
27. Zhang, J.-Q. et al. Conversion of triphenylphosphine oxide to organophosphorus via selective cleavage of C-P, O-P, and C-H bonds with sodium. *Commun. Chem.* **3**, 1 (2020).
28. Zhang, J.-Q. et al. Selective C-P(O) bond cleavage of organophosphine oxides by sodium. *J. Org. Chem.* **85**, 14166–14173 (2020).

29. Keereewan, S. et al. Diastereoselective addition of  $\text{PhSCF}_2\text{SiMe}_3$  to chiral *N*-*tert*-butanesulfinyl ketimines derived from isatins: synthesis of enantioenriched gem-difluoromethylenated spiro-pyrrolidinyl and spiro-piperidinyl oxindoles. *J. Org. Chem.* **87**, 15963–15985 (2022).

30. Korvorapun, K. et al. Stereoselective nucleophilic addition of  $\text{PhSCF}_2\text{SiMe}_3$  to chiral cyclic nitrones: asymmetric synthesis of gem-difluoromethylenated polyhydroxypyrrrolizidines and -indolizidines. *Chem. Asian J.* **10**, 948–968 (2015).

31. Masusai, C. et al. Synthesis of gem-difluoromethylenated polycyclic cage compounds. *J. Org. Chem.* **80**, 1577–1592 (2015).

32. Peewasan, K. et al.  $\alpha$ -Difluoro- $\alpha$ -phenylsulfonyl- $\alpha$ -trimethylsilylmethane as “ $\cdot\text{CF}_2$ ” synthetic building block for the preparation of gem-difluoromethylenated cyclopentanols. *J. Fluor. Chem.* **135**, 367–372 (2012).

33. Punirun, T., Soorukram, D., Kuhakarn, C., Reutrakul, V. & Pohmakotr, M. Oxidative difluoromethylation of tetrahydroisoquinolines using  $\text{TMSCF}_2\text{SPh}$ : synthesis of fluorinated pyrrolo[2,1-*a*]-isoquinolines and benzo[*a*]quinolizidines. *J. Org. Chem.* **83**, 765–782 (2018).

34. Thaharn, W. et al. Asymmetric synthesis of gem-difluoromethylenated linear triquinanes via cascade gem-difluoroalkyl radical cyclization. *J. Org. Chem.* **80**, 816–827 (2015).

35. Rong, J. et al. Radical fluoroalkylation of isocyanides with fluorinated sulfones by visible-light photoredox catalysis. *Angew. Chem. Int. Ed.* **55**, 2743–2747 (2016).

36. Fu, W. et al. Visible-light-mediated radical oxydifluoromethylation of olefinic amides for the synthesis of  $\text{CF}_2\text{H}$ -containing heterocycles. *Chem. Comm.* **52**, 13413–13416 (2016).

37. Rong, J., Wang Yunze, N. C., Cuiwen, K., Yucheng, G. & Jinbo, H. Radical fluoroalkylation of aryl alkenes with fluorinated sulfones by visible-light photoredox catalysis. *Acta Chim. Sin.* **75**, 105–109 (2017).

38. Zou, G. & Wang, X. Visible-light induced di- and trifluoromethylation of *N*-benzamides with fluorinated sulfones for the synthesis of  $\text{CF}_2\text{H}/\text{CF}_3$ -containing isoquinolinediones. *Org. Biomol. Chem.* **15**, 8748–8754 (2017).

39. Trump, L. et al. Late-stage  $^{18}\text{F}$ -difluoromethyl labeling of *N*-heteroaromatics with high molar activity for PET imaging. *Angew. Chem. Int. Ed.* **58**, 13149–13154 (2019).

40. Zhu, M. et al. Visible-light-induced radical di- and trifluoromethylation of  $\beta$ ,  $\gamma$ -unsaturated oximes: synthesis of di- and trifluoromethylated isoxazolines. *Eur. J. Org. Chem.* **2019**, 1614–1619 (2019).

41. Zhu, M., You, Q. & Li, R. Synthesis of  $\text{CF}_2\text{H}$ -containing oxindoles via photoredox-catalyzed radical difluoromethylation and cyclization of *N*-arylacrylamides. *J. Fluor. Chem.* **228**, 109391 (2019).

42. Bao, K., Wei, J., Yan, H. & Sheng, R. Visible-light promoted three-component tandem reaction to synthesize difluoromethylated oxazolidin-2-imine. *RSC Adv.* **10**, 25947–25951 (2020).

43. Zhang, B. & Wang, J. Acyldifluoromethylation enabled by NHC-photoredox cocatalysis. *Org. Lett.* **24**, 3721–3725 (2022).

44. Zhou, X., Ni, C., Deng, L. & Hu, J. Electrochemical reduction of fluoroalkyl sulfones for radical fluoroalkylation of alkenes. *Chem. Commun.* **57**, 8750–8753 (2021).

45. Mao, E., Prieto Kullmer, C. N., Sakai, H. A. & MacMillan, D. W. C. Direct bioisostere replacement enabled by metallaphotoredox deoxydifluoromethylation. *J. Am. Chem. Soc.* **146**, 5067–5073 (2024).

46. Hu, J., Liu, R. & Liu, A. Preparation method of difluoromethyl sulfone compound. China patent CN 112574076A (2021).

47. Hu, J. Nucleophilic, radical, and electrophilic (phenylsulfonyl) difluoromethylations. *J. Fluor. Chem.* **130**, 1130–1139 (2009).

48. Ni, C., Hu, M. & Hu, J. Good partnership between sulfur and fluorine: sulfur-based fluorination and fluoroalkylation reagents for organic synthesis. *Chem. Rev.* **115**, 765–825 (2015).

49. Jia, R., Wang, X. & Hu, J. Recent advance in synthetic applications of difluoromethyl phenyl sulfone and its derivatives. *Tetrahedron Lett.* **75**, 153182 (2021).

50. Prakash, G. K. S., Hu, J., Wang, Y. & Olah, G. A. Nucleophilic difluoromethylation of primary alkyl halides using difluoromethyl phenyl sulfone as a difluoromethyl anion equivalent. *Org. Lett.* **6**, 4315–4317 (2004).

51. Prakash, G. K. S., Hu, J., Wang, Y. & Olah, G. A. Difluoromethyl phenyl sulfone, a difluoromethylidene equivalent: use in the synthesis of 1,1-difluoro-1-alkenes. *Angew. Chem. Int. Ed.* **43**, 5203–5206 (2004).

52. Prakash, G. K. S., Hu, J., Wang, Y. & Olah, G. A. Convenient synthesis of difluoromethyl alcohols from both enolizable and non-enolizable carbonyl compounds with difluoromethyl phenyl sulfone. *Eur. J. Org. Chem.* **2005**, 2218–2223 (2005).

53. Hu, M., Gao, B., Ni, C., Zhang, L. & Hu, J. Nucleophilic difluoro(phenylsulfonyl)methylation of carbonyls with  $\text{PhSO}_2\text{CF}_2\text{H}$  reagent in the presence of in situ generated stoichiometric amount of base. *J. Fluor. Chem.* **155**, 52–58 (2013).

54. Li, Y. & Hu, J. Facile synthesis of chiral  $\alpha$ -difluoromethyl amines from *N*-(*tert*-butylsulfinyl)aldimines. *Angew. Chem. Int. Ed.* **44**, 5882–5886 (2005).

55. Liu, J., Li, Y. & Hu, J. Stereoselective synthesis of di- and mono-fluoromethylated vicinal ethylenediamines with di- and mono-fluoromethyl sulfones. *J. Org. Chem.* **72**, 3119–3121 (2007).

56. Sabol, J. S. & McCarthy, J. R. A new route to 1,1-difluoro olefins: application to the synthesis of 2'-deoxy-2'-difluoromethylene nucleosides. *Tetrahedron Lett.* **33**, 3101–3104 (1992).

57. Stahly, G. P. Nucleophilic addition of difluoromethyl phenyl sulfone to aldehydes and various transformations of the resulting alcohols. *J. Fluor. Chem.* **43**, 53–66 (1989).

58. Ni, C. & Hu, J. Nucleophilic difluoromethylation of carbonyl compounds using  $\text{TMSCF}_2\text{SO}_2\text{Ph}$  and  $\text{Mg}^0$ -mediated desulfonylation. *Tetrahedron Lett.* **46**, 8273–8277 (2005).

59. Kim, S. et al. Radical hydrodifluoromethylation of unsaturated C–C bonds via an electroreducingly triggered two-pronged approach. *Commun. Chem.* **5**, 96 (2022).

60. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. *Chem. Rev.* **113**, 5322–5363 (2013).

61. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. *Chem. Rev.* **116**, 10075–10166 (2016).

62. Wei, Z., Lou, Z., Ni, C., Zhang, W. & Hu, J. Visible-light-promoted S-trifluoromethylation of thiophenols with trifluoromethyl phenyl sulfone. *Chem. Commun.* **58**, 10024–10027 (2022).

63. Zhang, F.-X., Lin, J.-H. & Xiao, J.-C. Difluoromethylsulfonyl imidazolium salt for difluoromethylation of alkenes. *Org. Lett.* **24**, 7611–7616 (2022).

64. Crespi, S. & Fagnoni, M. Generation of alkyl radicals: from the tyranny of tin to the photon democracy. *Chem. Rev.* **120**, 9790–9833 (2020).

65. Wang, H. & Jui, N. T. Catalytic defluoroalkylation of trifluoromethylaromatics with unactivated alkenes. *J. Am. Chem. Soc.* **140**, 163–166 (2018).

66. Vogt, D. B., Seath, C. P., Wang, H. & Jui, N. T. Selective C–F functionalization of unactivated trifluoromethylarenes. *J. Am. Chem. Soc.* **141**, 13203–13211 (2019).

67. Hendy, C. M., Smith, G. C., Xu, Z., Lian, T. & Jui, N. T. Radical chain reduction via carbon dioxide radical anion ( $\text{CO}_2^-$ ). *J. Am. Chem. Soc.* **143**, 8987–8992 (2021).

68. Xiao, W., Zhang, J. & Wu, J. Recent advances in reactions involving carbon dioxide radical anion. *ACS Catal.* **13**, 15991–16011 (2023).

69. Shen, Q., Cao, K., Wen, X. & Li, J. Formate salts: the rediscovery of their radical reaction under light irradiation opens new avenues in organic synthesis. *Adv. Synth. Catal.* **366**, 4274–4293 (2024).

70. Jia, R. *Radical Fluoroalkylation Based on Fluoroalkylsulfones*. Master's Thesis, Zhengzhou University (2021).

71. Liu, C., Li, K. & Shang, R. Arenethiolate as a dual function catalyst for Photocatalytic defluoroalkylation and hydrodefluorination of trifluoromethyls. *ACS Catal.* **12**, 4103–4109 (2022).

72. Liu, C., Shen, N. & Shang, R. Photocatalytic defluoroalkylation of trifluoroacetates with alkenes using 4-(acetamido)thiophenol. *Synthesis* **55**, 1401–1409 (2023).

73. Shreiber, S. T. et al. Visible-light-induced C–F bond activation for the difluoroalkylation of indoles. *Org. Lett.* **24**, 8542–8546 (2022).

74. Matsuo, B. et al. Transition metal-free photochemical C–F activation for the preparation of difluorinated-oxindole derivatives. *Chem. Sci.* **14**, 2379–2385 (2023).

75. Ni, C., Liu, J., Zhang, L. & Hu, J. A remarkably efficient fluoroalkylation of cyclic sulfates and sulfamides with  $\text{PhSO}_2\text{CF}_2\text{H}$ : facile entry into  $\beta$ -difluoromethylated or  $\beta$ -difluoromethylenated alcohols and amines. *Angew. Chem. Int. Ed.* **46**, 786–789 (2007).

76. Syed, Y. Y. Pitolisant: first global approval. *Drugs* **76**, 1313–1318 (2016).

77. Jiang, H. et al. A facile preparation of 2-bromodifluoromethyl benzo-1,3-diazoles and its application in the synthesis of gem-difluoromethylene linked aryl ether compounds. *J. Fluor. Chem.* **133**, 167–170 (2012).

78. Xiong, H.-Y., Pannecoucke, X. & Basset, T. Recent advances in the synthesis of  $\text{SCF}_2\text{H}$ - and  $\text{SCF}_2\text{FG}$ -containing molecules. *Chem. Eur. J.* **22**, 16734–16749 (2016).

79. Orsi, D. L., Easley, B. J., Lick, A. M. & Altman, R. A. Base catalysis enables access to  $\alpha,\alpha$ -difluoroalkylthioethers. *Org. Lett.* **19**, 1570–1573 (2017).

80. Geri, J. B., Wade Wolfe, M. M. & Szymczak, N. K. The difluoromethyl group as a masked nucleophile: a Lewis acid/base approach. *J. Am. Chem. Soc.* **140**, 9404–9408 (2018).

81. Brigham, C. E., Malapit, C. A., Laloo, N. & Sanford, M. S. Nickel-catalyzed decarbonylative synthesis of fluoroalkyl thioethers. *ACS Catal.* **10**, 8315–8320 (2020).

82. Santos, L. et al. Deprotonative functionalization of the difluoromethyl group. *Org. Lett.* **22**, 8741–8745 (2020).

83. Zubkov, M. O. et al. A novel photoredox-active group for the generation of fluorinated radicals from difluorostyrenes. *Chem. Sci.* **11**, 737–741 (2020).

84. Xu, J. et al. Construction of C–X (X = S, O, Se) bonds via Lewis acid-promoted functionalization of trifluoromethylarenes. *ACS Catal.* **13**, 7339–7346 (2023).

85. De, S. et al. Pyridine: the scaffolds with significant clinical diversity. *RSC Adv.* **12**, 15385–15406 (2022).

86. Buzzetti, L., Crisenza, G. E. M. & Melchiorre, P. Mechanistic Studies In Photocatalysis. *Angew. Chem. Int. Ed.* **58**, 3730–3747 (2019).

Science Foundation of China (22261132514, J.H.; 22271299, C.N.), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0590000, J.H.).

## Author contributions

J.H. conceived the concept. S.S., R.J., X.Z. and J.R. performed the experiments. S.S., R.J., X.Z. Z.W. and C.N. contributed to the analysis and interpretation of the data. S.S., X.Z., and J.H. wrote the paper.

## Competing interests

The authors declare no competing interests.

## Additional information

**Supplementary information** The online version contains supplementary material available at <https://doi.org/10.1038/s41467-025-62834-3>.

**Correspondence** and requests for materials should be addressed to Jinbo Hu.

**Peer review information** *Nature Communications* thanks Takashi Koike, Rui Shang and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

**Reprints and permissions information** is available at <http://www.nature.com/reprints>

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025

## Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFF0701700, J.H.), the National Natural