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ABSTRACT: A new difluoroalkylation reagent Sulfox-CF2SO2Ph
bearing both sulfoximine and sulfone moieties was prepared from
commercially available SulfoxFluor and PhSO2CF2H. On one hand,
the Sulfox-CF2SO2Ph reagent could act as a (phenylsulfonyl)-
difluoromethyl radical source under photoredox catalysis, in which
the arylsulfoximidoyl group is selectively removed. On the other hand,
under basic conditions, Sulfox-CF2SO2Ph could serve as a
difluorocarbene precursor for S- and O-difluoromethylations with S-
and O-nucleophiles, respectively, in which the phenylsulfonyl group in
Sulfox-CF2SO2Ph is selectively removed (followed by α-elimination of the arylsulfoximidoyl group).

The selective introduction of fluorine atoms or fluorinated
moieties into organic molecules can often bring about

profound changes in the latter’s physical and biological
properties. For instance, the difluoromethyl (CF2H) and
difluoroalkyl (CF2R, where R ≠ H) groups have found wide
applications in pesticides,1 functional materials,2 and pharma-
ceuticals.3 The synthesis of difluoromethylated and difluor-
oalkylated compounds generally relies on the use of
corresponding CF2H- and CF2R-transfer reagents,4 such as
Si-based,5 Zn-based,6 P-based,7 I-based,8 and S-based9

difluoromethylation and difluoroalkylation reagents, among
which the difluoromethyl sulfoximines10 and sulfones9,11 have
attracted a great deal of attention owing to their unique
reactivity in organic synthesis.

Highly tunable functionalities of difluoroalkyl sulfoximine
and sulfone reagents showed divergent reactivities and
selectivities under different reaction conditions. Hu and co-
workers reported that N-tosyl-S-difluoromethyl-S-phenylsul-
foximine [PhS(O)NTsCF2H] could release difluorocarbene in
the presence of NaH, trapped by S-, N-, and C-nucleophiles
(Scheme 1a, left).10a On the contrary, the photocatalysis
rendered PhS(O)NTsCF2H as a source of difluoromethyl
radical species for oxidifluoromethylation of alkenes.12 A
similar activation strategy was used in the case of
difluoromethyl phenyl sulfone (PhSO2CF2H), in which the
deprotonation by LHMDS as a base produced a nucleophilic
PhSO2CF2

− species,13 while the electrophilic PhSO2CF2
radical species was obtained under electrochemical conditions
(Scheme 1b).14 However, the different reactivities and
selectivities of difluoroalkylated reagents bearing both
sulfoximine and sulfone functionalities have never been
reported (Scheme 1c).

To explore the reaction conditions to tune the reactivity and
selectivity of sulfone and sulfoximine within the same
molecule, we tried to synthesize Sulfox-CF2SO2Ph reagent 1a
from SulfoxFluor and PhSO2CF2H. Notably, the practical
synthetic methods for SulfoxFluor on a large scale have been
developed by us.15 The treatment of SulfoxFluor and
PhSO2CF2H by LiHMDS and HMPA afforded product 1a in
77% yield and 97% purity, together with 3% (PhSO2)2CF2
(Scheme 2). The reduction potential of 1a was found to be
−0.939 V (see the Supporting Information for details), which
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Scheme 1. Tuning the Reactivity of Difluoromethylated
Sulfoximines and Sulfones
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indicates that 1a is easily reduced under a single electron-
transfer process. With target compound 1a in hand, we next
investigated which C−S bond of 1a would be preferentially
cleaved and whether the different reaction conditions could
control the selective cleavage of each C−S bond.

Initially, the selective C−S bond cleavage of 1 in the
photocatalyzed radical difluoroalkylation of 1,1-diphenyl-
ethylene (2a) was evaluated (Table 1). Notably, the

sulfoximine moiety of 1a was predominantly cleaved to
generate the PhSO2CF2 radical species, which was used to
react with alkene 2a. Under the irradiation of blue LEDs and
catalysis of fac-Ir(ppy)3 (2.0 mol %), alkene 2a (1.0 equiv)
smoothly reacted with 1a (1.2 equiv) in acetone and water at
room temperature in 1 h, affording oxy(phenylsulfonyl)-
difluoromethylation product 3a in 95% NMR yield (entry
1). When the nonchlorinated version of reagent 1b was used
instead of 1a under the standard reaction conditions, product
3a was produced in 99% NMR yield, which rules out the
influence of a chlorine substituent on the selective C−S bond
cleavage of 1a (entry 2). Other common photocatalysts such as
Eosin Y and Ru(bpy)3·6H2O failed to yield product 3a,
probably due to their reduction potentials being lower than
that of fac-Ir(ppy)3 (entries 3 and 4, respectively). fac-Ir(ppy)3
in combination with white LEDs also succeeded in catalyzing
this transformation (entry 5). Starting material 1a was
completely recovered in the absence of either light or a
photocatalyst (entry 6 or 7, respectyively). The decreased yield
of 3a was observed when this reaction was performed in air
(entry 8). This transformation could be inhibited in the
presence of radical scavengers such as TEMPO and 1,4-
benzoquinone, which supports the involvement of the
PhSO2CF2 radical species during this process (entry 9).

To demonstrate the reactivity of 1a as a (phenylsulfonyl)-
difluoromethyl radical source under the optimized reaction
conditions (Table 1, entry 1), a wide range of styrenes were
examined (Scheme 3). Using α-substituted styrenes, 1,1-

diphenyl ethylene and α-methylstyrenes, this new synthetic
method gave products 3a−3d in good yields (on a 0.2 or 1
mmol scale). Various styrenes with an electron-rich group such
as phenyl (2f), methyl (2g−2i), and phenoxyl (2j) were all
compatible with the current reaction conditions, affording
products 3f−3j, respectively, in 73−90% yields. Styrenes
bearing different halogens at different positions (2k−2o) were
also viable (3k−3o, respectively). In addition, when a CF3
group is substituted at the meta position of styrene, the
corresponding product 3p was obtained in low yield (36%).
Moreover, multiple functionalities and heteroaryl groups on
the styrenes were compatible with this reaction, and the
corresponding products 3q and 3r were formed in 78% and
50% yields, respectively. For the reactions with 4-methoxystyr-

Scheme 2. Synthetic Route of 1a

Table 1. Optimization of the Reaction Conditions

entry variation from the above conditionsa yield of 3a (%)b

1 none 95
2 1b instead of 1a 99
3 Eosin Y instead of fac-Ir(ppy)3 0
4 Ru(bpy)3·6H2O instead of fac-Ir(ppy)3 0
5 white LEDs instead of blue LEDs 95
6 without fac-Ir(ppy)3 0
7 in the dark 0
8 in air 70
9 addition of TEMPO or 1,4-benzoquinone 0

aStandard reaction conditions: 1a (0.24 mmol, 1.2 equiv), 2a (0.2
mmol), fac-Ir(ppy)3 (2 mol %), acetone (4.5 mL), H2O (0.5 mL),
blue LEDs, room temperature, 1 h, Ar. bYields were determined by
19F NMR spectroscopy using PhOCF3 as an internal standard.

Scheme 3. Substrate Scope of Radical (Phenylsulfonyl)-
difluoromethylation with 1aa,b

aReaction conditions: 1a (0.24 mmol, 1.2 equiv), 2 (0.2 mmol), fac-
Ir(ppy)3 (2 mol %), acetone (4.5 mL), H2O (0.5 mL), blue LEDs,
room temperature, 1 h, Ar. bIsolated yields. cOn a 1 mmol scale, 4 h.
dUsing MeOH instead of H2O. eReaction conditions: 3b (0.3 mmol),
Mg (6 mmol, 20 equiv), BrCH2CH2Br (12 mol %), MeOH (4.5 mL),
3 h, room temperature, in air.
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ene (2s) and 4-hydrostyrene (2t), methanol was used as the
oxylation agent, and products 3s and 3t were obtained in 66%
yield, respectively. Finally, desulfonylation of 3b was
successfully conducted in the presence of Mg and methanol
to give difluoromethylated product 4 in 69% yield.

Inspired by the aforementioned results, we further
discovered that 1a could act as a difluorocarbene precursor
under basic conditions (Scheme 4). Various thiophenols or

phenols could smoothly react with 1a (2.0 equiv) in the
presence of KOH (5.0 equiv) in MeCN and H2O at room
temperature for 1 h. As shown in Scheme 4, the
difluoromethylation of thiophenols gave difluoromethyl phenyl
sulfides (6a−6d) in 31−61% yields. Furthermore, it was found
that this synthetic protocol was efficient for the difluorome-
thylation of naphthols 5e−5h (in 52−67% yields). When a
phenyl group of phenols was substituted at the ortho position,
O-difluoromethylated product 6i was obtained in a yield
(48%) lower than that with para-substituted phenol (6g, 69%).
The phenols bearing electron-withdrawing groups were
successfully difluoromethylated to give the corresponding
products 6l and 6n−6q in 47−88% yields. It is noteworthy
that when p-nitrophenol 5l was subjected to this trans-
formation, product 6l was obtained in a high yield (88%).
When reagent 1b was used instead of 1a under the standard
reaction conditions, the same product 6l was also obtained in
88% yield. Furthermore, an alkenyl group on phenol could be
well tolerated in this reaction, and product 6m was obtained in
59% yield. It is hypothesized that KOH attacked the sulfur
atom of the phenylsulfone moiety of 1a to generate
ArS(O)NTsCF2

− and the benzenesulfonate ion. The in situ-
formed difluorocarbene [from highly unstable ArS(O)-
NTsCF2

−] was captured by the S- and O-nucleophiles,
delivering the difluoromethylated products after protonation.

Indeed, the benzenesulfonate ion was detected by HPLC (see
Scheme S1).

In summary, we have developed a novel difluoroalkylation
reagent, 1, which is prepared from commercially available and
inexpensive SulfoxFluor and PhSO2CF2H. This newly
developed reagent 1 could act as an amphoteric synthetic
equivalent of the (phenylsulfonyl)difluoromethyl radical and
difluorocarbene. On one hand, under photocatalysis, the
sulfoximine moiety of 1 is selectively removed, which enables
radical (phenylsulfonyl)difluoromethylation of alkenes. On the
other hand, under basic conditions, the sulfonyl moiety of 1 is
cleaved (followed by α-elimination of the sulfoximidoyl
moiety), and the generated difluorocarbene is captured by S-
and O-nucleophiles to give corresponding difluoromethylated
products. Our results showcase the unique reactivity of the
newly synthesized Sulfox-CF2SO2Ph reagent and provide
intriguing insights into the fluorinated sulfone and sulfoximine
chemistry.
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