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ABSTRACT: Controllable fluorocarbon chain elongation (CFCE) is a promising yet underdeveloped strategy for the well-defined
synthesis of structurally novel polyfluorinated compounds. Herein, the direct and efficient trifluorovinylation and
pentafluorocyclopropylation of aldehydes are described by using TMSCF2Br (TMS = trimethylsilyl) as the sole fluorocarbon
source, accomplishing the goals of CFCE from C1 to C2 and from C1 to C3, respectively. The key to the success of these CFCE
processes lies in the unique and diversified chemical reactivity of TMSCF2Br, which can serve as two different precursors, namely, a
TMSCF2 radical precursor and a difluorocarbene precursor. Various functional groups are amenable to this new synthetic protocol,
providing streamlined access to a broad range of alcohols containing trifluorovinyl or pentafluorocyclopropyl moieties from
abundantly available aldehydes. The potential utility of these methods is further demonstrated by the gram-scale synthesis,
derivatization, and measurement of log P values of the products.

The unique properties of fluorine have opened up
tantalizing opportunities for the advancement of

pharmaceuticals, agrochemicals, and materials,1 thus triggering
a boom in the synthesis of various fluorine-containing
molecules.2 For instance, fluoroalkenes and fluorocyclopro-
panes have attracted particular interest due to their combined
features of fluorine and unsaturated bonds (including “banana
bonds” with properties similar to unsaturated double bonds).3

Indeed, many of fluoroalkenes and fluorocyclopropanes have
been utilized as functional molecules4 or valuable synthons.5

Additionally, the easily transformable characters (involving
unsaturated bonds) of these compounds may also provide
chances for biodegradation, without the concerns about PFAS
(per- and polyfluoroalkyl substances) issues.6 The past decades
have witnessed tremendous developments in the synthesis of
mono/gem-difluoroalkenes7 and mono/gem-difluorocyclopro-
panes.4c,d,8 Moreover, many approaches toward the synthesis
of various fluoroalkyl-substituted alkenes9 and cyclopropanes10

have also been well-documented. However, all of these
established methods mainly focused on the synthesis of
fluorine-containing alkenes or cyclopropanes with a single
fluorinated carbon atom (C1). Convenient procedures for the
synthesis of trifluoroalkenes11 with two fluorinated carbon
atoms (C2) and, in particular, of pentafluorocyclopropanes12

with three fluorinated carbon atoms (C3) are scarce.
The controllable fluorocarbon chain elongation (CFCE)

reaction has been considered as a powerful strategy for the
selective construction of various structurally diverse poly-
fluorinated compounds (especially difficult-to-prepare struc-
tures by traditional methods) from simple fluorocarbon
sources.13 TMSCF2Br (TMS = trimethylsilyl), a commercially
available difluorocarbene reagent developed in our group,14

can serve as one of the choices of fluorocarbon sources owing
to its mild and broadly applicable conditions.13b,c,14−16 In
2015, we reported gem-difluoroolefination (C1) and tetra-

fluorocyclopropanation (C2) of diazo compounds with
TMSCF2Br under transition-metal-free conditions, in which
the use of TMSCF2Br as the sole fluorocarbon source realized
the controllable incorporation of one and two fluorinated
carbon atoms (Scheme 1A).17 As part of our ongoing studies
of CFCE chemistry (Scheme 1B), we postulated that
TMSCF2Br could serve as a TMSCF2 radical precursor and
u n d e r g o t h e h o m o c o u p l i n g r e a c t i o n t o f o r m
TMSCF2CF2TMS, which reacts with aldehydes in one pot to
give the desired trifluoroalkenes (C2). Then, the use of
TMSCF2Br as a difluorocarbene precursor enables the [2 + 1]
cycloaddition of in situ generated trifluoroalkenes with
difluorocarbene, resulting in the formation of the desired
pentafluorocyclopropanes (C3). The overall process can be
regarded as TMSCF2Br-enabled trifluorovinylation and penta-
fluorocyclopropylation of aldehydes, which accomplishes the
goals of CFCE from C1 to C2 and from C1 to C3 by using
TMSCF2Br as the sole fluorocarbon source (Scheme 1C).

The homocoupling reaction of TMSCF2Br was initially
explored with the selection of inexpensive commercial zinc
dust as a reductant (Table 1).18,19 We found that the
homocoupling product (TMSCF2CF2TMS) was observed in
94% yield by using FeCl2 as a catalyst and zinc dust as a
reductant (Table 1, entry 1). The control experiments
demonstrated that the combination of FeCl2 and zinc dust
was crucial for the efficient generation of TMSCF2CF2TMS.
The reaction provided 40% yield of TMSCF2CF2TMS in the
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absence of FeCl2 (Table 1, entry 2), and no yield of
TMSCF2CF2TMS was observed in the absence of zinc dust
(Table 1, entry 3).20 Lower temperatures, reduced usage of
FeCl2, and solvent changes led to lower yields of
TMSCF2CF2TMS (Table 1, entries 4−6). TMSCF2CF2TMS
can be isolated by recrystallization at −20 °C (for details, see
the Supporting Information).19c It is worth noting that this
reaction was successfully scaled up to 100 mmol without much
loss of efficiency (Table 1, entry 7).

Subsequently, we explored the application of the unsepa-
rated homocoupling product TMSCF2CF2TMS for trifluor-
ovinylation of aldehydes in one pot, and a catalytic amount of
tetrabutylammonium triphenyldifluorosilicate (TBAT) was

used as an initiator (Scheme 2A). However, the existence of
metal salts (such as zinc bromide) in the solution of

TMSCF2CF2TMS inhibited the desired trifluorovinylation
reaction since metal salts could consume the fluorine ions
(released from the initiator) to form the strong M−F bond (M
= metal). We found that simple aqueous washing could
effectively remove the metal salts from the solution of
TMSCF 2 CF 2 TMS, and the obtained solut ion of
TMSCF2CF2TMS could smoothly react with aldehyde (1a)
to afford the desired trifluorovinylation product (2a) in 81%
yield. In accordance with the results reported by Prakash19c

and Fuchikami,11g the trifluorovinylation product can be
explained through two possible paths, as shown in Scheme
2A. β-Fluorine ion elimination results in the formation of the
trifluorovinyl group from TMSCF2CF2TMS. After confirming
the formation of trifluoroalkene (2a) generated from aldehyde
(1a) and TMSCF2Br, we further performed the [2 + 1]
cycloaddition of the unseparated trifluoroalkene (2a) with
difluorocarbene (generated from TMSCF2Br) to deliver
desired pentafluorocyclopropylation product 3a (Scheme
2B). A careful screening of the initiator and solvents, the
ratio of reagents, and reaction temperatures brought about the
optimized conditions. Interestingly, we found that a catalytic
amount of TBAT utilized in the process of trifluorovinylation
could also serve as the initiator of the subsequent [2 + 1]
cycloaddition reaction. The unseparated trifluoroalkene (2a)
obtained from aldehydes (1a) and TMSCF2Br could, without

Scheme 1. TMSCF2Br-Enabled CFCE Strategy for the
Synthesis of Fluoroalkenes and Fluorocyclopropanes

Table 1. Optimization of Reaction Conditions for the
Homocoupling Reaction of TMSCF2Br

a

entry deviation from standard conditions yield (%)b

1 none 94
2 no FeCl2 40
3 no Zn n.d.d

4 50 °C 65
5 0.1 equiv of FeCl2 68
6 DMF as solvent 43
7c scaled up to 100 mmol 89

aStandard conditions: TMSCF2Br (0.8 mmol, 1.0 equiv), FeCl2 (0.2
equiv), Zn (1.5 equiv) in THF (2 mL), 80 °C, 8 h. bYields were
determined by 19F NMR using PhCF3 as an internal standard.
cReaction was performed on a 100 mmol scale. dn.d. = not detected.

Scheme 2. Trifluorovinylation and
Pentafluorocyclopropylation of 1a with TMSCF2Br Under
the Optimized Conditionsa

aConditions for 2a (R = 4-Ph−C6H4): TMSCF2Br (100.0 mmol),
FeCl2 (0.2 equiv), Zn (1.5 equiv) in THF (50 mL), 80 °C, 8 h, to give
the THF solution of TMSCF2CF2TMS (used after aqueous washing).
1a (0.4 mmol, 1.0 equiv), TBAT (0.02 mmol, 0.05 equiv), the THF
solution of TMSCF2CF2TMS (0.48 mmol, 1.2 equiv), rt, 1 h.
Conditions for 3a: 2a generated from 1a (0.4 mmol, 1.0 equiv) under
above conditions, TMSCF2Br (1.2 mmol, 3.0 equiv), Ph2O (0.5 mL),
120 °C, 6 h. Yields were determined by 19F NMR using 1-
fluoronaphthalene or PhCF3 as an internal standard.
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Scheme 3. Substrate Scopes for Trifluorovinylation and Pentafluorocyclopropylation of Aldehydes with TMSCF2Br
a

aConditions for 4−27: TMSCF2Br (100.0 mmol), FeCl2 (0.2 equiv), Zn (1.5 equiv) in THF (50 mL), 80 °C, 8 h, to give the THF solution of
TMSCF2CF2TMS (used after aqueous washing). 1 (0.4 mmol, 1.0 equiv), TBAT (0.02 mmol, 0.05 equiv), the THF solution of TMSCF2CF2TMS
(0.48 mmol, 1.2 equiv), rt, 1 h. HCl (3 M, 2 mL), rt, 0.5 h. Conditions for 28−53: Trifluorovinylated silyl ethers generated from 1 (0.4 mmol, 1.0
equiv) under above conditions, TMSCF2Br (1.2 mmol, 3.0 equiv), Ph2O (0.5 mL), 120 °C, 6 h. Then, n-Bu4NF·3H2O (2.0 mmol, 5.0 equiv), rt,
0.5 h. bYields were determined by 19F NMR using 1-fluoronaphthalene or PhCF3 as an internal standard. cThe diastereoisomer ratio (d.r.) was
determined by 19F NMR spectroscopy analysis.
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extra addition of an initiator, directly react with TMSCF2Br in
Ph2O at 120 °C for 6 h to give the targeted pentafluor-
ocyclopropane (3a) in 73% yield. Notably, trifluoroalkene (2a)
was completely consumed, which indicates that trifluoroalkene
(2a) has a high reactivity toward difluorocarbene.

After the establishment of these optimized conditions, we
next evaluated the substrate scope of the trifluorovinylation
reaction enabled by TMSCF2Br (Scheme 3A). Trifluoroviny-
lated silyl ethers were converted into the corresponding
alcohols (for the sake of easy purification) by treatment with
an aqueous HCl solution. An array of structurally diverse
aromatic aldehydes proved to be appropriate substrates for this
reaction, and the desired trifluorovinylated alcohols were
obtained in good yields (4−27). Benzaldehydes bearing para-/
meta-/ortho-methyl groups could undergo this transformation
with the formation of the targeted products (4−6) in similar
yields, even though ortho-substituents have more steric
hindrance than meta- and para-substituents. Under the
standard conditions, this reaction tolerated diverse functional
groups well, including electron-donating groups containing
oxygen/sulfur/nitrogen atoms (7−10) and weak electron-
withdrawing groups containing various halogens (11−15).
Relatively complex aromatic aldehydes featuring two and three
substituents at the different positions of aryl rings performed
well in this reaction, affording the corresponding products
(16−19) in 69−89% yields. A variety of aromatic and
heteroaromatic aldehydes with π-extended systems were also
smoothly transformed into the corresponding trifluoroviny-
lated alcohols (20−25) in high yields. The transformation of
the primary aliphatic aldehyde was found to be inefficient (26),
but the secondary alkyl aldehyde such as helional (a widely
used flavor compound) was an appropriate substrate for this

transformation, affording the desired product (27) in 74%
yield.

Having confirmed the good compatibility of the trifluor-
ovinylation reaction involving a C1 to C2 process, we turned
our attention to investigate the substrate versatility of the
unprecedented pentafluorocyclopropylation of aldehydes in-
volving a C1 to C3 process (Scheme 3B). n-Bu4NF·3H2O
instead of an aqueous HCl solution was utilized for more
efficient desilylations of pentafluorocyclopropylated silyl
ethers. A wide range of electron-donating and almost
electron-neutral substituents on the phenyl rings of aromatic
aldehydes, including alkyl (28, 34, 36), ethers (29, 30, 35),
amine (31), thioether (32), and halogen (33), were found to
be compatible with the standard conditions, as demonstrated
by the good yields of targeted pentafluorocyclopropylated
alcohols 28−36. Some common strong electron-withdrawing
substituents (such as nitro (38), ester (40), and cyano (43))
on the phenyl rings of multisubstituted aromatic aldehydes
could also be tolerated well under the reaction conditions. The
position of the substituents did not have much influence on the
product yields, as demonstrated by the examples (28−43). A
range of aromatic and heteroaromatic aldehydes with π-
extended systems could yield target products 44−53 in
moderate to good yields. In addition, the single crystal
structure of product 30 was successfully characterized (CCDC
2303482), thus confirming the unprecedented structure of
pentafluorocyclopropylated alcohol 30.

Considering that no method for the preparation of
pentafluorocyclopropylated alcohols from abundant aldehydes
has been yet reported, we then illustrated the synthetic
applications of the pentafluorocyclopropylated alcohols
obtained by our new pentafluorocyclopropylation reaction
(Scheme 4). First, the gram-scale synthesis of pentafluor-

Scheme 4. Synthetic Applicationsa

aFor reaction details, see the Supporting Information.
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ocyclopropylated alcohols (29 and 44) was successfully
accomplished under the standard conditions (Scheme 4A).
Subsequently, we utilized the obtained pentafluorocyclopropy-
lated alcohol (29) to carry out a variety of derivatization
reactions (Scheme 4B). 29 could react with 4-chloroquinazo-
line under basic conditions to give the nucleophilic aromatic
substitution product 4-alkoxy quinazoline (54) in 59% yield.
29 was also readily converted into the corresponding ester
(55) in the presence of acetic anhydride (Ac2O). In addition,
the oxidation of 29 was accomplished by selecting 2-
iodoxybenzoic acid (IBX) as an oxidant, furnishing penta-
fluorocyclopropylated ketone (56) in 86% yield. The
deoxyfluorination and witting olefination of 56 were
successfully achieved, giving corresponding products 57 and
58 in good yields, respectively.

The modulation of the lipophilicity (log P) of bioactive
molecules plays a vital role in pharmaceutical and agrochemical
discovery, and the appropriate incorporation of fluorine has
been utilized as a common strategy for the optimization of
lipophilicity.21 Thus, we measured the log P values of a series
of alkanols (44, 59−63) containing various fluorinated groups
by C18 reverse phase HPLC (Scheme 4C),22 which indicated
that the lipophilicity of the pentafluorocyclopropyl group (44)
is slightly higher than the pentafluoroethyl group (62)
possessing the same number of fluorine atoms (3.57 vs 3.54)
and yet lower than the heptafluoroisopropyl group (63)
possessing the same number of fluorinated carbon atoms (3.57
vs 4.06).

In conclusion, we developed a new controllable fluorocarbon
chain elongation (CFCE) strategy enabling trifluorovinylation
and pentafluorocyclopropylation of aldehydes with
TMSCF2Br. The reaction started with the highly efficient
formation of TMSCF2CF2TMS via FeCl2-catalyzed homocou-
pling of TMSCF2Br with inexpensive zinc dust as a reductant.
In this process, TMSCF2Br was utilized as a TMSCF2 radical
precursor. And trifluorovinylation of aldehydes with the
unseparated TMSCF2CF2TMS brought about the desired
trifluoroalkenes with the CFCE from C1 to C2. More
importantly, the use of TMSCF2Br as a difluorocarbene
precursor enabled [2 + 1] cycloaddition of the unseparated
trifluoroalkenes with difluorocarbene, affording another desired
pentafluorocyclopropylated products with the CFCE from C1
to C3. Notably, the current pentafluorocyclopropylation
method represents the first example of CFCE from C1 to C3
by the use of TMSCF2Br as the sole fluorocarbon
source.13b,c,17 Gram-scale synthesis, derivatization, and meas-
urement of log P values further enhanced the synthetic
potential of our methods. Further exploration of the CFCE
strategy in the synthesis of fluorinated functional molecules
(especially compounds containing more than three fluorinated
carbon atoms) is currently underway in our laboratory.
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Configurations of 2-Bromoöctane, 3-Methylnonane and 7,8-Dime-
thyltetradecane. J. Am. Chem. Soc. 1958, 80, 622−625. (h) Wurtz, A.
Ueber eine neue Klasse organischer Radicale. Justus Liebigs Ann.
Chem. 1855, 96, 364−375.

(20) Kosobokov, M. D.; Levin, V. V.; Zemtsov, A. A.; Struchkova,
M. I.; Korlyukov, A. A.; Arkhipov, D. E.; Dilman, A. D. Geminal
silicon/zinc reagent as an equivalent of difluoromethylene bis-
carbanion. Org. Lett. 2014, 16, 1438−1441.

(21) Jeffries, B.; Wang, Z.; Felstead, H. R.; Le Questel, J.-Y.; Scott, J.
S.; Chiarparin, E.; Graton, J.; Linclau, B. Systematic Investigation of
Lipophilicity Modulation by Aliphatic Fluorination Motifs. J. Med.
Chem. 2020, 63, 1002−1031.

(22) (a) Xu, W. Q.; Xu, X. H.; Qing, F. L. Synthesis and Properties
of CF3(OCF3)CH-Substituted Arenes and Alkenes. Chin. J. Chem.
2020, 38, 847−854. (b) Thomson, C. J.; Zhang, Q.; Al-Maharik, N.;
Buhl, M.; Cordes, D. B.; Slawin, A. M. Z.; O’Hagan, D. Fluorinated
cyclopropanes: synthesis and chemistry of the aryl alpha,beta,beta-
trifluorocyclopropane motif. Chem. Commun. 2018, 54, 8415−8418.

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://doi.org/10.1021/jacs.3c12919
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

G

https://doi.org/10.1002/anie.202217088
https://doi.org/10.1002/anie.202217088
https://doi.org/10.1002/anie.202217088
https://doi.org/10.1021/jacs.2c03104?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.2c03104?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.2c03104?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.2c03104?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D2CC00975G
https://doi.org/10.1039/D2CC00975G
https://doi.org/10.1038/s41557-019-0331-9
https://doi.org/10.1038/s41557-019-0331-9
https://doi.org/10.1038/s41557-019-0331-9
https://doi.org/10.1039/C9SC05018C
https://doi.org/10.1039/C9SC05018C
https://doi.org/10.1039/C9SC05018C
https://doi.org/10.1002/anie.201807873
https://doi.org/10.1002/anie.201807873
https://doi.org/10.1021/acs.joc.9b02001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.joc.9b02001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.joc.9b02001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.joc.9b02001?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0022-1139(99)00247-X
https://doi.org/10.1016/S0022-1139(99)00247-X
https://doi.org/10.1016/S0022-1139(99)00247-X
https://doi.org/10.1016/S0022-1139(99)00247-X
https://doi.org/10.1021/ja00037a057?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00037a057?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja00037a057?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C0CC04548A
https://doi.org/10.1039/C0CC04548A
https://doi.org/10.1002/anie.201306703
https://doi.org/10.1002/anie.201306703
https://doi.org/10.1002/anie.201611823
https://doi.org/10.1002/anie.201611823
https://doi.org/10.1002/anie.201611823
https://doi.org/10.1002/anie.201900763
https://doi.org/10.1002/anie.201900763
https://doi.org/10.1002/anie.201900763
https://doi.org/10.1002/anie.202115467
https://doi.org/10.1002/anie.202115467
https://doi.org/10.1002/anie.202115467
https://doi.org/10.1021/jacs.3c08858?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.3c08858?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/chem.202303144
https://doi.org/10.1002/chem.202303144
https://doi.org/10.1021/acs.orglett.3c02914?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.orglett.3c02914?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.orglett.3c02914?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s44160-022-00128-y
https://doi.org/10.1038/s44160-022-00128-y
https://doi.org/10.1038/s44160-022-00128-y
https://doi.org/10.1021/jacs.1c10205?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.1c10205?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.5b09888?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.5b09888?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.5b09888?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.6023/cjoc202005072
https://doi.org/10.6023/cjoc202005072
https://doi.org/10.6023/cjoc202005072
https://doi.org/10.1002/chem.201803518
https://doi.org/10.1002/chem.201803518
https://doi.org/10.1002/chem.201803518
https://doi.org/10.1016/j.tet.2010.07.001
https://doi.org/10.1016/j.tet.2010.07.001
https://doi.org/10.1055/s-0036-1591583
https://doi.org/10.1055/s-0036-1591583
https://doi.org/10.1055/s-0036-1591583
https://doi.org/10.1021/ol005943f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ol005943f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja962990n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja962990n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja962990n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja962990n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S0022-1139(00)81020-9
https://doi.org/10.1016/S0022-1139(00)81020-9
https://doi.org/10.1016/S0022-328X(00)81910-5
https://doi.org/10.1016/S0022-328X(00)81910-5
https://doi.org/10.1007/BF00910110
https://doi.org/10.1021/ja01536a030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja01536a030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja01536a030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jlac.18550960310
https://doi.org/10.1021/ol5002297?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ol5002297?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ol5002297?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jmedchem.9b01172?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jmedchem.9b01172?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/cjoc.202000062
https://doi.org/10.1002/cjoc.202000062
https://doi.org/10.1039/C8CC04964E
https://doi.org/10.1039/C8CC04964E
https://doi.org/10.1039/C8CC04964E
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c12919?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

